{"title":"看到引力希尔伯特空间的观察者:抽象路径积分的抽象源","authors":"Hong Zhe Vincent Chen","doi":"10.1007/JHEP10(2025)139","DOIUrl":null,"url":null,"abstract":"<p>The gravitational path integral suggests a striking result: the Hilbert space of closed universes in each superselection sector, a so-called <i>α</i>-sector, is one-dimensional. We develop an abstract formalism encapsulating recent proposals that modify the gravitational path integral in the presence of observers and allow larger Hilbert spaces to be associated with closed universes. Our formalism regards the gravitational path integral as a map from abstract objects called sources to complex numbers, and introduces additional objects called partial sources, which form sources when glued together. We apply this formalism to treat, on equal footing, universes with spatial boundaries, closed universes with prescribed observer worldlines, and closed universes containing observers entangled with external systems. In these contexts, the relevant gravitational Hilbert spaces contain states prepared by partial sources and can consequently have nontrivial <i>α</i>-sectors supporting noncommuting operators. Within our general framework, the positivity of the gravitational inner product implies a bound on the Hilbert space trace of certain positive operators over each <i>α</i>-sector. The trace of such operators, in turn, quantifies the effective size of this Hilbert space.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 10","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP10(2025)139.pdf","citationCount":"0","resultStr":"{\"title\":\"Observers seeing gravitational Hilbert spaces: abstract sources for an abstract path integral\",\"authors\":\"Hong Zhe Vincent Chen\",\"doi\":\"10.1007/JHEP10(2025)139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The gravitational path integral suggests a striking result: the Hilbert space of closed universes in each superselection sector, a so-called <i>α</i>-sector, is one-dimensional. We develop an abstract formalism encapsulating recent proposals that modify the gravitational path integral in the presence of observers and allow larger Hilbert spaces to be associated with closed universes. Our formalism regards the gravitational path integral as a map from abstract objects called sources to complex numbers, and introduces additional objects called partial sources, which form sources when glued together. We apply this formalism to treat, on equal footing, universes with spatial boundaries, closed universes with prescribed observer worldlines, and closed universes containing observers entangled with external systems. In these contexts, the relevant gravitational Hilbert spaces contain states prepared by partial sources and can consequently have nontrivial <i>α</i>-sectors supporting noncommuting operators. Within our general framework, the positivity of the gravitational inner product implies a bound on the Hilbert space trace of certain positive operators over each <i>α</i>-sector. The trace of such operators, in turn, quantifies the effective size of this Hilbert space.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 10\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP10(2025)139.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP10(2025)139\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP10(2025)139","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Observers seeing gravitational Hilbert spaces: abstract sources for an abstract path integral
The gravitational path integral suggests a striking result: the Hilbert space of closed universes in each superselection sector, a so-called α-sector, is one-dimensional. We develop an abstract formalism encapsulating recent proposals that modify the gravitational path integral in the presence of observers and allow larger Hilbert spaces to be associated with closed universes. Our formalism regards the gravitational path integral as a map from abstract objects called sources to complex numbers, and introduces additional objects called partial sources, which form sources when glued together. We apply this formalism to treat, on equal footing, universes with spatial boundaries, closed universes with prescribed observer worldlines, and closed universes containing observers entangled with external systems. In these contexts, the relevant gravitational Hilbert spaces contain states prepared by partial sources and can consequently have nontrivial α-sectors supporting noncommuting operators. Within our general framework, the positivity of the gravitational inner product implies a bound on the Hilbert space trace of certain positive operators over each α-sector. The trace of such operators, in turn, quantifies the effective size of this Hilbert space.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).