Jacob M. Leedom, Margherita Putti, Nicole Righi, Alexander Westphal
{"title":"Preheating axions in string cosmology","authors":"Jacob M. Leedom, Margherita Putti, Nicole Righi, Alexander Westphal","doi":"10.1007/JHEP04(2025)095","DOIUrl":"10.1007/JHEP04(2025)095","url":null,"abstract":"<p>Certain inflationary models can feature periods of preheating — an era preceding reheating during which parametric resonance triggers an exponential production of bosons. This non-perturbative process can have significant impact on the history of our universe, with consequences ranging from altered reheating channels to overproduction of dark radiation to overclosure. In this work, we study parametric resonance production of axions in string models of inflation. We find that the kinetic couplings and moduli-dependent axion masses give rise to generalizations of the Mathieu equation. We study these generalizations and determine the strength of parametric resonance created by such couplings. We then apply this technology to fibre inflation models in Type IIB orientifold compactifications. We find that heavy axions can be copiously produced and avoidance of overclosure results in constraints on the typical fibre inflation parameter space.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)095.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neutrino energy and momentum emission from magnetized dense quark matter","authors":"Ritesh Ghosh, Igor A. Shovkovy","doi":"10.1007/JHEP04(2025)110","DOIUrl":"10.1007/JHEP04(2025)110","url":null,"abstract":"<p>Using first-principles field-theoretic methods, we investigate neutrino emission from strongly magnetized dense quark matter under conditions relevant to compact stars. We develop a customized approximation that fully accounts for the Landau-level quantization of electron states while neglecting such quantization for quarks. This approach is well-justified in dense quark matter, where the chemical potentials of up and down quarks significantly exceed those of electrons. Our analysis provides a detailed exploration of the influence of strong magnetic fields on neutrino emission, including both the modification of the total emission rate and the emergence of emission asymmetry relative to the magnetic field direction. We further examine the role of temperature in smoothing the oscillatory behavior of neutrino emission as a function of magnetic field strength. Additionally, we study the interplay between the Landau-level quantization of electrons and the Fermi-liquid effects of quarks in modifying the phase space of relevant weak processes. Finally, we briefly discuss the broader implications of magnetic fields on stellar cooling processes and the potential contribution of asymmetric neutrino emission to pulsar kicks.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)110.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On multipoint Ward identities for superconformal line defects","authors":"Gabriel Bliard","doi":"10.1007/JHEP04(2025)102","DOIUrl":"10.1007/JHEP04(2025)102","url":null,"abstract":"<p>Superconformal Ward identities are revisited in the context of superconformal line defects. Multipoint correlators of topological operators inserted on superconformal lines are studied. In particular, it is known that protected operators preserving enough of the supersymmetry become topological after performing a topological twist. By definition, such a correlator is constant in the topological limit. By analysing the topological constraint on the OPE of such operators, the correlator is further constrained away from this limit. The constraints on multipoint correlators match the known superconformal Ward identities in the case of 4-point functions. This allows for an simple and universal derivation of the superconformal Ward identities governing the multipoint correlation functions of such operators. This concept is illustrated by 1/2-BPS operators with an <i>su</i>(2) R-symmetry and further explored in the case of the displacement multiplet on the 1/2-BPS Wilson line in 4d <span>( mathcal{N} )</span> = 4 super Yang-Mills theory supporting the conjectured multipoint Ward identities in the literature.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)102.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dalibor Djukanovic, Georg von Hippel, Simon Kuberski, Harvey B. Meyer, Nolan Miller, Konstantin Ottnad, Julian Parrino, Andreas Risch, Hartmut Wittig
{"title":"The hadronic vacuum polarization contribution to the muon g − 2 at long distances","authors":"Dalibor Djukanovic, Georg von Hippel, Simon Kuberski, Harvey B. Meyer, Nolan Miller, Konstantin Ottnad, Julian Parrino, Andreas Risch, Hartmut Wittig","doi":"10.1007/JHEP04(2025)098","DOIUrl":"10.1007/JHEP04(2025)098","url":null,"abstract":"<p>We present our lattice QCD result for the long-distance part of the hadronic vacuum polarization contribution, (<span>( {a}_{mu}^{textrm{hvp}} )</span>)<sup>LD</sup>, to the muon <i>g</i> − 2 in the time-momentum representation. This is the numerically dominant, and at the same time the most challenging part regarding statistical precision. Our calculation is based on ensembles with dynamical up, down and strange quarks, employing the O(<i>a</i>)-improved Wilson fermion action with lattice spacings ranging from 0<i>.</i>035–0<i>.</i>099 fm. In order to reduce statistical noise in the long-distance part of the correlator to the per-mille level, we apply low-mode averaging and combine it with an explicit spectral reconstruction. Our result is (<span>( {a}_{mu}^{textrm{hvp}} )</span>)<sup>LD</sup> = 423<i>.</i>2(4<i>.</i>2)<sub>stat</sub>(3<i>.</i>4)<sub>syst</sub> × 10<sup>−10</sup> in isospin-symmetric QCD, where the pion decay constant is used to set the energy scale. When combined with our previous results for the short- and intermediate-distance window observables and after including all sub-dominant contributions as well as isospin-breaking corrections, we obtain the total leading-order hadronic vacuum polarization contribution as <span>( {a}_{mu}^{textrm{hvp}} )</span> = 724<i>.</i>5(4<i>.</i>9)<sub>stat</sub>(5<i>.</i>2)<sub>syst</sub> × 10<sup>−10</sup>. Our result displays a tension of 3.9 standard deviations with the data-driven estimate published in the 2020 White Paper, but leads to a SM prediction for the total muon anomalous magnetic moment that agrees with the current experimental average.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)098.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143852550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Belle and Belle II collaborations, I. Adachi, L. Aggarwal, H. Ahmed, H. Aihara, N. Akopov, A. Aloisio, S. Al Said, N. Althubiti, N. Anh Ky, D. M. Asner, H. Atmacan, T. Aushev, V. Aushev, M. Aversano, R. Ayad, V. Babu, H. Bae, N. K. Baghel, S. Bahinipati, P. Bambade, Sw. Banerjee, S. Bansal, M. Barrett, M. Bartl, J. Baudot, A. Baur, A. Beaubien, F. Becherer, J. Becker, K. Belous, J. V. Bennett, F. U. Bernlochner, V. Bertacchi, M. Bertemes, E. Bertholet, M. Bessner, S. Bettarini, V. Bhardwaj, B. Bhuyan, F. Bianchi, L. Bierwirth, T. Bilka, D. Biswas, A. Bobrov, D. Bodrov, A. Bolz, A. Bondar, J. Borah, A. Boschetti, A. Bozek, M. Bračko, P. Branchini, R. A. Briere, T. E. Browder, A. Budano, S. Bussino, Q. Campagna, M. Campajola, L. Cao, G. Casarosa, C. Cecchi, J. Cerasoli, M.-C. Chang, P. Chang, R. Cheaib, P. Cheema, B. G. Cheon, K. Chilikin, K. Chirapatpimol, H.-E. Cho, K. Cho, S.-J. Cho, S.-K. Choi, S. Choudhury, J. Cochran, L. Corona, J. X. Cui, F. Dattola, E. De La Cruz-Burelo, S. A. De La Motte, G. De Nardo, M. De Nuccio, G. De Pietro, R. de Sangro, M. Destefanis, S. Dey, R. Dhamija, A. Di Canto, F. Di Capua, J. Dingfelder, Z. Doležal, I. Domínguez Jiménez, T. V. Dong, D. Dorner, K. Dort, D. Dossett, S. Dreyer, S. Dubey, K. Dugic, G. Dujany, P. Ecker, M. Eliachevitch, D. Epifanov, P. Feichtinger, T. Ferber, T. Fillinger, C. Finck, G. Finocchiaro, A. Fodor, F. Forti, A. Frey, B. G. Fulsom, A. Gabrielli, E. Ganiev, M. Garcia-Hernandez, R. Garg, G. Gaudino, V. Gaur, A. Gellrich, G. Ghevondyan, D. Ghosh, H. Ghumaryan, G. Giakoustidis, R. Giordano, A. Giri, P. Gironella Gironell, A. Glazov, B. Gobbo, R. Godang, P. Goldenzweig, E. Graziani, D. Greenwald, Z. Gruberová, T. Gu, Y. Guan, K. Gudkova, I. Haide, S. Halder, Y. Han, T. Hara, C. Harris, K. Hayasaka, H. Hayashii, S. Hazra, M. T. Hedges, A. Heidelbach, I. Heredia de la Cruz, M. Hernández Villanueva, T. Higuchi, M. Hoek, M. Hohmann, R. Hoppe, P. Horak, C.-L. Hsu, T. Humair, T. Iijima, K. Inami, N. Ipsita, A. Ishikawa, R. Itoh, M. Iwasaki, P. Jackson, W. W. Jacobs, E.-J. Jang, Q. P. Ji, S. Jia, Y. Jin, A. Johnson, K. K. Joo, H. Junkerkalefeld, M. Kaleta, D. Kalita, A. B. Kaliyar, J. Kandra, K. H. Kang, S. Kang, G. Karyan, T. Kawasaki, F. Keil, C. Ketter, C. Kiesling, C.-H. Kim, D. Y. Kim, J.-Y. Kim, K.-H. Kim, Y.-K. Kim, Y. J. Kim, H. Kindo, K. Kinoshita, P. Kodyš, T. Koga, S. Kohani, K. Kojima, A. Korobov, S. Korpar, E. Kovalenko, P. Križan, P. Krokovny, T. Kuhr, Y. Kulii, D. Kumar, J. Kumar, M. Kumar, R. Kumar, K. Kumara, T. Kunigo, A. Kuzmin, Y.-J. Kwon, S. Lacaprara, K. Lalwani, T. Lam, L. Lanceri, J. S. Lange, T. S. Lau, M. Laurenza, K. Lautenbach, R. Leboucher, F. R. Le Diberder, M. J. Lee, C. Lemettais, P. Leo, D. Levit, P. M. Lewis, L. K. Li, Q. M. Li, S. X. Li, W. Z. Li, Y. Li, Y. B. Li, Y. P. Liao, J. Libby, J. Lin, Z. Liptak, M. H. Liu, Q. Y. Liu, Y. Liu, Z. Q. Liu, D. Liventsev, S. Longo, T. Lueck, C. Lyu, Y. Ma, C. Madaan, M. Maggiora, S. P. Maharana, R. Maiti, S. Maity, G. Mancinelli, R. Manfredi, E. Manoni, M. Mantovano, D. Marcantonio, S. Marcello, C. Marinas, C. Martellini, A. Martens, A. Martini, T. Martinov, L. Massaccesi, M. Masuda, D. Matvienko, S. K. Maurya, M. Maushart, J. A. McKenna, F. Meier, M. Merola, F. Metzner, C. Miller, M. Mirra, S. Mitra, K. Miyabayashi, R. Mizuk, G. B. Mohanty, S. Mondal, S. Moneta, H.-G. Moser, M. Mrvar, R. Mussa, I. Nakamura, M. Nakao, Y. Nakazawa, M. Naruki, Z. Natkaniec, A. Natochii, M. Nayak, G. Nazaryan, M. Neu, C. Niebuhr, M. Niiyama, S. Nishida, S. Ogawa, Y. Onishchuk, H. Ono, Y. Onuki, F. Otani, P. Pakhlov, G. Pakhlova, E. Paoloni, S. Pardi, K. Parham, H. Park, J. Park, K. Park, S.-H. Park, B. Paschen, A. Passeri, S. Patra, S. Paul, T. K. Pedlar, R. Peschke, R. Pestotnik, M. Piccolo, L. E. Piilonen, G. Pinna Angioni, P. L. M. Podesta-Lerma, T. Podobnik, S. Pokharel, C. Praz, S. Prell, E. Prencipe, M. T. Prim, I. Prudiiev, H. Purwar, P. Rados, G. Raeuber, S. Raiz, N. Rauls, K. Ravindran, J. U. Rehman, M. Reif, S. Reiter, M. Remnev, L. Reuter, D. Ricalde Herrmann, I. Ripp-Baudot, G. Rizzo, M. Roehrken, J. M. Roney, A. Rostomyan, N. Rout, D. A. Sanders, S. Sandilya, L. Santelj, Y. Sato, V. Savinov, B. Scavino, C. Schmitt, S. Schneider, G. Schnell, M. Schnepf, C. Schwanda, A. J. Schwartz, Y. Seino, A. Selce, K. Senyo, J. Serrano, M. E. Sevior, C. Sfienti, W. Shan, C. Sharma, C. P. Shen, X. D. Shi, T. Shillington, T. Shimasaki, J.-G. Shiu, D. Shtol, A. Sibidanov, F. Simon, J. B. Singh, J. Skorupa, M. Sobotzik, A. Soffer, A. Sokolov, E. Solovieva, W. Song, S. Spataro, B. Spruck, M. Starič, P. Stavroulakis, S. Stefkova, R. Stroili, J. Strube, Y. Sue, M. Sumihama, K. Sumisawa, W. Sutcliffe, N. Suwonjandee, H. Svidras, M. Takahashi, M. Takizawa, U. Tamponi, S. Tanaka, K. Tanida, F. Tenchini, A. Thaller, O. Tittel, R. Tiwary, E. Torassa, K. Trabelsi, I. Tsaklidis, I. Ueda, T. Uglov, K. Unger, Y. Unno, K. Uno, S. Uno, P. Urquijo, Y. Ushiroda, S. E. Vahsen, R. van Tonder, K. E. Varvell, M. Veronesi, A. Vinokurova, V. S. Vismaya, L. Vitale, V. Vobbilisetti, R. Volpe, A. Vossen, B. Wach, M. Wakai, S. Wallner, B. Wang, E. Wang, M.-Z. Wang, X. L. Wang, Z. Wang, A. Warburton, M. Watanabe, S. Watanuki, C. Wessel, J. Wiechczynski, E. Won, X. P. Xu, B. D. Yabsley, S. Yamada, S. B. Yang, M. Yasaveev, J. Yelton, J. H. Yin, Y. M. Yook, K. Yoshihara, C. Z. Yuan, J. Yuan, Y. Yusa, L. Zani, F. Zeng, B. Zhang, V. Zhilich, J. S. Zhou, Q. D. Zhou, V. I. Zhukova, R. Žlebčík
{"title":"Measurement of the inclusive branching fractions for ({B}_{s}^{0}) decays into D mesons via hadronic tagging","authors":"The Belle and Belle II collaborations, I. Adachi, L. Aggarwal, H. Ahmed, H. Aihara, N. Akopov, A. Aloisio, S. Al Said, N. Althubiti, N. Anh Ky, D. M. Asner, H. Atmacan, T. Aushev, V. Aushev, M. Aversano, R. Ayad, V. Babu, H. Bae, N. K. Baghel, S. Bahinipati, P. Bambade, Sw. Banerjee, S. Bansal, M. Barrett, M. Bartl, J. Baudot, A. Baur, A. Beaubien, F. Becherer, J. Becker, K. Belous, J. V. Bennett, F. U. Bernlochner, V. Bertacchi, M. Bertemes, E. Bertholet, M. Bessner, S. Bettarini, V. Bhardwaj, B. Bhuyan, F. Bianchi, L. Bierwirth, T. Bilka, D. Biswas, A. Bobrov, D. Bodrov, A. Bolz, A. Bondar, J. Borah, A. Boschetti, A. Bozek, M. Bračko, P. Branchini, R. A. Briere, T. E. Browder, A. Budano, S. Bussino, Q. Campagna, M. Campajola, L. Cao, G. Casarosa, C. Cecchi, J. Cerasoli, M.-C. Chang, P. Chang, R. Cheaib, P. Cheema, B. G. Cheon, K. Chilikin, K. Chirapatpimol, H.-E. Cho, K. Cho, S.-J. Cho, S.-K. Choi, S. Choudhury, J. Cochran, L. Corona, J. X. Cui, F. Dattola, E. De La Cruz-Burelo, S. A. De La Motte, G. De Nardo, M. De Nuccio, G. De Pietro, R. de Sangro, M. Destefanis, S. Dey, R. Dhamija, A. Di Canto, F. Di Capua, J. Dingfelder, Z. Doležal, I. Domínguez Jiménez, T. V. Dong, D. Dorner, K. Dort, D. Dossett, S. Dreyer, S. Dubey, K. Dugic, G. Dujany, P. Ecker, M. Eliachevitch, D. Epifanov, P. Feichtinger, T. Ferber, T. Fillinger, C. Finck, G. Finocchiaro, A. Fodor, F. Forti, A. Frey, B. G. Fulsom, A. Gabrielli, E. Ganiev, M. Garcia-Hernandez, R. Garg, G. Gaudino, V. Gaur, A. Gellrich, G. Ghevondyan, D. Ghosh, H. Ghumaryan, G. Giakoustidis, R. Giordano, A. Giri, P. Gironella Gironell, A. Glazov, B. Gobbo, R. Godang, P. Goldenzweig, E. Graziani, D. Greenwald, Z. Gruberová, T. Gu, Y. Guan, K. Gudkova, I. Haide, S. Halder, Y. Han, T. Hara, C. Harris, K. Hayasaka, H. Hayashii, S. Hazra, M. T. Hedges, A. Heidelbach, I. Heredia de la Cruz, M. Hernández Villanueva, T. Higuchi, M. Hoek, M. Hohmann, R. Hoppe, P. Horak, C.-L. Hsu, T. Humair, T. Iijima, K. Inami, N. Ipsita, A. Ishikawa, R. Itoh, M. Iwasaki, P. Jackson, W. W. Jacobs, E.-J. Jang, Q. P. Ji, S. Jia, Y. Jin, A. Johnson, K. K. Joo, H. Junkerkalefeld, M. Kaleta, D. Kalita, A. B. Kaliyar, J. Kandra, K. H. Kang, S. Kang, G. Karyan, T. Kawasaki, F. Keil, C. Ketter, C. Kiesling, C.-H. Kim, D. Y. Kim, J.-Y. Kim, K.-H. Kim, Y.-K. Kim, Y. J. Kim, H. Kindo, K. Kinoshita, P. Kodyš, T. Koga, S. Kohani, K. Kojima, A. Korobov, S. Korpar, E. Kovalenko, P. Križan, P. Krokovny, T. Kuhr, Y. Kulii, D. Kumar, J. Kumar, M. Kumar, R. Kumar, K. Kumara, T. Kunigo, A. Kuzmin, Y.-J. Kwon, S. Lacaprara, K. Lalwani, T. Lam, L. Lanceri, J. S. Lange, T. S. Lau, M. Laurenza, K. Lautenbach, R. Leboucher, F. R. Le Diberder, M. J. Lee, C. Lemettais, P. Leo, D. Levit, P. M. Lewis, L. K. Li, Q. M. Li, S. X. Li, W. Z. Li, Y. Li, Y. B. Li, Y. P. Liao, J. Libby, J. Lin, Z. Liptak, M. H. Liu, Q. Y. Liu, Y. Liu, Z. Q. Liu, D. Liventsev, S. Longo, T. Lueck, C. Lyu, Y. Ma, C. Madaan, M. Maggiora, S. P. Maharana, R. Maiti, S. Maity, G. Mancinelli, R. Manfredi, E. Manoni, M. Mantovano, D. Marcantonio, S. Marcello, C. Marinas, C. Martellini, A. Martens, A. Martini, T. Martinov, L. Massaccesi, M. Masuda, D. Matvienko, S. K. Maurya, M. Maushart, J. A. McKenna, F. Meier, M. Merola, F. Metzner, C. Miller, M. Mirra, S. Mitra, K. Miyabayashi, R. Mizuk, G. B. Mohanty, S. Mondal, S. Moneta, H.-G. Moser, M. Mrvar, R. Mussa, I. Nakamura, M. Nakao, Y. Nakazawa, M. Naruki, Z. Natkaniec, A. Natochii, M. Nayak, G. Nazaryan, M. Neu, C. Niebuhr, M. Niiyama, S. Nishida, S. Ogawa, Y. Onishchuk, H. Ono, Y. Onuki, F. Otani, P. Pakhlov, G. Pakhlova, E. Paoloni, S. Pardi, K. Parham, H. Park, J. Park, K. Park, S.-H. Park, B. Paschen, A. Passeri, S. Patra, S. Paul, T. K. Pedlar, R. Peschke, R. Pestotnik, M. Piccolo, L. E. Piilonen, G. Pinna Angioni, P. L. M. Podesta-Lerma, T. Podobnik, S. Pokharel, C. Praz, S. Prell, E. Prencipe, M. T. Prim, I. Prudiiev, H. Purwar, P. Rados, G. Raeuber, S. Raiz, N. Rauls, K. Ravindran, J. U. Rehman, M. Reif, S. Reiter, M. Remnev, L. Reuter, D. Ricalde Herrmann, I. Ripp-Baudot, G. Rizzo, M. Roehrken, J. M. Roney, A. Rostomyan, N. Rout, D. A. Sanders, S. Sandilya, L. Santelj, Y. Sato, V. Savinov, B. Scavino, C. Schmitt, S. Schneider, G. Schnell, M. Schnepf, C. Schwanda, A. J. Schwartz, Y. Seino, A. Selce, K. Senyo, J. Serrano, M. E. Sevior, C. Sfienti, W. Shan, C. Sharma, C. P. Shen, X. D. Shi, T. Shillington, T. Shimasaki, J.-G. Shiu, D. Shtol, A. Sibidanov, F. Simon, J. B. Singh, J. Skorupa, M. Sobotzik, A. Soffer, A. Sokolov, E. Solovieva, W. Song, S. Spataro, B. Spruck, M. Starič, P. Stavroulakis, S. Stefkova, R. Stroili, J. Strube, Y. Sue, M. Sumihama, K. Sumisawa, W. Sutcliffe, N. Suwonjandee, H. Svidras, M. Takahashi, M. Takizawa, U. Tamponi, S. Tanaka, K. Tanida, F. Tenchini, A. Thaller, O. Tittel, R. Tiwary, E. Torassa, K. Trabelsi, I. Tsaklidis, I. Ueda, T. Uglov, K. Unger, Y. Unno, K. Uno, S. Uno, P. Urquijo, Y. Ushiroda, S. E. Vahsen, R. van Tonder, K. E. Varvell, M. Veronesi, A. Vinokurova, V. S. Vismaya, L. Vitale, V. Vobbilisetti, R. Volpe, A. Vossen, B. Wach, M. Wakai, S. Wallner, B. Wang, E. Wang, M.-Z. Wang, X. L. Wang, Z. Wang, A. Warburton, M. Watanabe, S. Watanuki, C. Wessel, J. Wiechczynski, E. Won, X. P. Xu, B. D. Yabsley, S. Yamada, S. B. Yang, M. Yasaveev, J. Yelton, J. H. Yin, Y. M. Yook, K. Yoshihara, C. Z. Yuan, J. Yuan, Y. Yusa, L. Zani, F. Zeng, B. Zhang, V. Zhilich, J. S. Zhou, Q. D. Zhou, V. I. Zhukova, R. Žlebčík","doi":"10.1007/JHEP04(2025)114","DOIUrl":"10.1007/JHEP04(2025)114","url":null,"abstract":"<p>We report measurements of the absolute branching fractions <span>(mathcal{B}left({B}_{s}^{0}to {D}_{s}^{pm }Xright))</span>, <span>(mathcal{B}left({B}_{s}^{0}to {D}^{0}/{overline{D} }^{0}Xright))</span>, and <span>(mathcal{B}left({B}_{s}^{0}to {D}^{pm }Xright))</span>, where the latter is measured for the first time. The results are based on a 121.4 fb<sup><i>−</i>1</sup> data sample collected at the Υ(10860) resonance by the Belle detector at the KEKB asymmetric-energy <i>e</i><sup>+</sup><i>e</i><sup><i>−</i></sup> collider. We reconstruct one <span>({B}_{s}^{0})</span> meson in <span>({e}^{+}{e}^{-}to Upsilonleft(10860right)to {B}_{s}^{*}{overline{B} }_{s}^{*})</span> events and measure yields of <span>({D}_{s}^{+})</span>, <i>D</i><sup>0</sup>, and <i>D</i><sup>+</sup> mesons in the rest of the event. We obtain <span>(mathcal{B}left({B}_{s}^{0}to {D}_{s}^{pm }Xright)=left(68.6pm 7.2pm 4.0right)%)</span>, <span>(mathcal{B}left({B}_{s}^{0}to {D}^{0}/{overline{D} }^{0}Xright)=left(21.5pm 6.1pm 1.8right)%)</span>, and <span>(mathcal{B}left({B}_{s}^{0}to {D}^{pm }Xright)=left(12.6pm 4.6pm 1.3right)%)</span>, where the first uncertainty is statistical and the second is systematic. Averaging with previous Belle measurements gives <span>(mathcal{B}left({B}_{s}^{0}to {D}_{s}^{pm }Xright)=left(63.4pm 4.5pm 2.2right)%)</span> and <span>(mathcal{B}left({B}_{s}^{0}to {D}^{0}/{overline{D} }^{0}Xright)=left(23.9pm 4.1pm 1.8right)%)</span>. For the <span>({B}_{s}^{0})</span> production fraction at the Υ(10860), we find <span>({f}_{s}=left({21.4}_{-1.7}^{+1.5}right)%)</span>.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)114.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143840385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generalized Clausius inequalities and entanglement production in holographic two-dimensional CFTs","authors":"Tanay Kibe, Ayan Mukhopadhyay, Pratik Roy","doi":"10.1007/JHEP04(2025)096","DOIUrl":"10.1007/JHEP04(2025)096","url":null,"abstract":"<p>Utilizing quantum information theory, it has been shown that irreversible entropy production is bounded from both below and above in physical processes. Both these bounds are positive and generalize the Clausius inequality. Such bounds are, however, obtained from distance measures in the space of states, which are hard to define and compute in quantum field theories. We show that the quantum null energy condition (QNEC) can be utilized to obtain both lower and upper bounds on irreversible entropy production for quenches leading to transitions between thermal states carrying uniform momentum density in two dimensional holographic conformal field theories. We achieve this by refining earlier methods and developing an algebraic procedure for determining HRT surfaces in arbitrary Bañados-Vaidya geometries which are dual to quenches involving transitions between general quantum equilibrium states (e.g. thermal states) where the QNEC is saturated. We also discuss results for the growth and thermalization of entanglement entropy for arbitrary initial and final temperatures and momentum densities. The rate of quadratic growth of entanglement just after the quench depends only on the change in the energy density and is independent of the entangling length. For sufficiently large entangling lengths, the entanglement tsunami phenomenon can be established. Finally, we study recovery of the initial state from the evolving entanglement entropy and argue that the Renyi entropies should give us a refined understanding of scrambling of quantum information.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)096.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The KM3NeT collaboration, S. Aiello, A. Albert, A. R. Alhebsi, M. Alshamsi, S. Alves Garre, A. Ambrosone, F. Ameli, M. Andre, L. Aphecetche, M. Ardid, S. Ardid, J. Aublin, F. Badaracco, L. Bailly-Salins, Z. Bardačová, B. Baret, A. Bariego-Quintana, Y. Becherini, M. Bendahman, F. Benfenati Gualandi, M. Benhassi, M. Bennani, D. M. Benoit, E. Berbee, V. Bertin, S. Biagi, M. Boettcher, D. Bonanno, A. B. Bouasla, J. Boumaaza, M. Bouta, M. Bouwhuis, C. Bozza, R. M. Bozza, H. Brânzaş, F. Bretaudeau, M. Breuhaus, R. Bruijn, J. Brunner, R. Bruno, E. Buis, R. Buompane, J. Busto, B. Caiffi, D. Calvo, A. Capone, F. Carenini, V. Carretero, T. Cartraud, P. Castaldi, V. Cecchini, S. Celli, L. Cerisy, M. Chabab, A. Chen, S. Cherubini, T. Chiarusi, M. Circella, R. Clark, R. Cocimano, J. A. B. Coelho, A. Coleiro, A. Condorelli, R. Coniglione, P. Coyle, A. Creusot, G. Cuttone, R. Dallier, A. De Benedittis, G. De Wasseige, V. Decoene, P. Deguire, I. Del Rosso, L. S. Di Mauro, I. Di Palma, A. F. Díaz, D. Diego-Tortosa, C. Distefano, A. Domi, C. Donzaud, D. Dornic, E. Drakopoulou, D. Drouhin, J.-G. Ducoin, P. Duverne, R. Dvornický, T. Eberl, E. Eckerová, A. Eddymaoui, T. van Eeden, M. Eff, D. van Eijk, I. El Bojaddaini, S. El Hedri, S. El Mentawi, V. Ellajosyula, A. Enzenhöfer, G. Ferrara, M. D. Filipović, F. Filippini, D. Franciotti, L. A. Fusco, S. Gagliardini, T. Gal, J. García Méndez, A. Garcia Soto, C. Gatius Oliver, N. Geißelbrecht, E. Genton, H. Ghaddari, L. Gialanella, B. K. Gibson, E. Giorgio, I. Goos, P. Goswami, S. R. Gozzini, R. Gracia, C. Guidi, B. Guillon, M. Gutiérrez, C. Haack, H. van Haren, A. Heijboer, L. Hennig, J. J. Hernández-Rey, A. Idrissi, W. Idrissi Ibnsalih, G. Illuminati, D. Joly, M. de Jong, P. de Jong, B. J. Jung, P. Kalaczyński, V. Kikvadze, G. Kistauri, C. Kopper, A. Kouchner, Y. Y. Kovalev, L. Krupa, V. Kueviakoe, V. Kulikovskiy, R. Kvatadze, M. Labalme, R. Lahmann, M. Lamoureux, G. Larosa, C. Lastoria, J. Lazar, A. Lazo, S. Le Stum, G. Lehaut, V. Lemaître, E. Leonora, N. Lessing, G. Levi, M. Lindsey Clark, F. Longhitano, F. Magnani, J. Majumdar, L. Malerba, F. Mamedov, A. Manfreda, A. Manousakis, M. Marconi, A. Margiotta, A. Marinelli, C. Markou, L. Martin, M. Mastrodicasa, S. Mastroianni, J. Mauro, K. C. K. Mehta, A. Meskar, G. Miele, P. Migliozzi, E. Migneco, M. L. Mitsou, C. M. Mollo, L. Morales-Gallegos, A. Moussa, I. Mozun Mateo, R. Muller, M. R. Musone, M. Musumeci, S. Navas, A. Nayerhoda, C. A. Nicolau, B. Nkosi, B. Ó Fearraigh, V. Oliviero, A. Orlando, E. Oukacha, D. Paesani, J. Palacios González, G. Papalashvili, V. Parisi, A. Parmar, E. J. Pastor Gomez, C. Pastore, A. M. Păun, G. E. Păvălaş, S. Peña Martínez, M. Perrin-Terrin, V. Pestel, R. Pestes, P. Piattelli, A. Plavin, C. Poirè, V. Popa, T. Pradier, J. Prado, S. Pulvirenti, C. A. Quiroz-Rangel, N. Randazzo, A. Ratnani, S. Razzaque, I. C. Rea, D. Real, G. Riccobene, A. Romanov, E. Ros, A. Šaina, F. Salesa Greus, D. F. E. Samtleben, A. Sánchez Losa, S. Sanfilippo, M. Sanguineti, D. Santonocito, P. Sapienza, M. Scarnera, J. Schnabel, J. Schumann, H. M. Schutte, J. Seneca, N. Sennan, P. Sevle, I. Sgura, R. Shanidze, A. Sharma, Y. Shitov, F. Šimkovic, A. Simonelli, A. Sinopoulou, B. Spisso, M. Spurio, D. Stavropoulos, I. Štekl, M. Taiuti, G. Takadze, Y. Tayalati, H. Thiersen, S. Thoudam, I. Tosta, Melo, B. Trocmé, V. Tsourapis, A. Tudorache, E. Tzamariudaki, A. Ukleja, A. Vacheret, V. Valsecchi, V. Van Elewyck, G. Vannoye, G. Vasileiadis, F. Vazquez de Sola, A. Veutro, S. Viola, D. Vivolo, A. van Vliet, E. de Wolf, I. Lhenry-Yvon, S. Zavatarelli, A. Zegarelli, D. Zito, J. D. Zornoza, J. Zúñiga, N. Zywucka
{"title":"Probing invisible neutrino decay with the first six detection units of KM3NeT/ORCA","authors":"The KM3NeT collaboration, S. Aiello, A. Albert, A. R. Alhebsi, M. Alshamsi, S. Alves Garre, A. Ambrosone, F. Ameli, M. Andre, L. Aphecetche, M. Ardid, S. Ardid, J. Aublin, F. Badaracco, L. Bailly-Salins, Z. Bardačová, B. Baret, A. Bariego-Quintana, Y. Becherini, M. Bendahman, F. Benfenati Gualandi, M. Benhassi, M. Bennani, D. M. Benoit, E. Berbee, V. Bertin, S. Biagi, M. Boettcher, D. Bonanno, A. B. Bouasla, J. Boumaaza, M. Bouta, M. Bouwhuis, C. Bozza, R. M. Bozza, H. Brânzaş, F. Bretaudeau, M. Breuhaus, R. Bruijn, J. Brunner, R. Bruno, E. Buis, R. Buompane, J. Busto, B. Caiffi, D. Calvo, A. Capone, F. Carenini, V. Carretero, T. Cartraud, P. Castaldi, V. Cecchini, S. Celli, L. Cerisy, M. Chabab, A. Chen, S. Cherubini, T. Chiarusi, M. Circella, R. Clark, R. Cocimano, J. A. B. Coelho, A. Coleiro, A. Condorelli, R. Coniglione, P. Coyle, A. Creusot, G. Cuttone, R. Dallier, A. De Benedittis, G. De Wasseige, V. Decoene, P. Deguire, I. Del Rosso, L. S. Di Mauro, I. Di Palma, A. F. Díaz, D. Diego-Tortosa, C. Distefano, A. Domi, C. Donzaud, D. Dornic, E. Drakopoulou, D. Drouhin, J.-G. Ducoin, P. Duverne, R. Dvornický, T. Eberl, E. Eckerová, A. Eddymaoui, T. van Eeden, M. Eff, D. van Eijk, I. El Bojaddaini, S. El Hedri, S. El Mentawi, V. Ellajosyula, A. Enzenhöfer, G. Ferrara, M. D. Filipović, F. Filippini, D. Franciotti, L. A. Fusco, S. Gagliardini, T. Gal, J. García Méndez, A. Garcia Soto, C. Gatius Oliver, N. Geißelbrecht, E. Genton, H. Ghaddari, L. Gialanella, B. K. Gibson, E. Giorgio, I. Goos, P. Goswami, S. R. Gozzini, R. Gracia, C. Guidi, B. Guillon, M. Gutiérrez, C. Haack, H. van Haren, A. Heijboer, L. Hennig, J. J. Hernández-Rey, A. Idrissi, W. Idrissi Ibnsalih, G. Illuminati, D. Joly, M. de Jong, P. de Jong, B. J. Jung, P. Kalaczyński, V. Kikvadze, G. Kistauri, C. Kopper, A. Kouchner, Y. Y. Kovalev, L. Krupa, V. Kueviakoe, V. Kulikovskiy, R. Kvatadze, M. Labalme, R. Lahmann, M. Lamoureux, G. Larosa, C. Lastoria, J. Lazar, A. Lazo, S. Le Stum, G. Lehaut, V. Lemaître, E. Leonora, N. Lessing, G. Levi, M. Lindsey Clark, F. Longhitano, F. Magnani, J. Majumdar, L. Malerba, F. Mamedov, A. Manfreda, A. Manousakis, M. Marconi, A. Margiotta, A. Marinelli, C. Markou, L. Martin, M. Mastrodicasa, S. Mastroianni, J. Mauro, K. C. K. Mehta, A. Meskar, G. Miele, P. Migliozzi, E. Migneco, M. L. Mitsou, C. M. Mollo, L. Morales-Gallegos, A. Moussa, I. Mozun Mateo, R. Muller, M. R. Musone, M. Musumeci, S. Navas, A. Nayerhoda, C. A. Nicolau, B. Nkosi, B. Ó Fearraigh, V. Oliviero, A. Orlando, E. Oukacha, D. Paesani, J. Palacios González, G. Papalashvili, V. Parisi, A. Parmar, E. J. Pastor Gomez, C. Pastore, A. M. Păun, G. E. Păvălaş, S. Peña Martínez, M. Perrin-Terrin, V. Pestel, R. Pestes, P. Piattelli, A. Plavin, C. Poirè, V. Popa, T. Pradier, J. Prado, S. Pulvirenti, C. A. Quiroz-Rangel, N. Randazzo, A. Ratnani, S. Razzaque, I. C. Rea, D. Real, G. Riccobene, A. Romanov, E. Ros, A. Šaina, F. Salesa Greus, D. F. E. Samtleben, A. Sánchez Losa, S. Sanfilippo, M. Sanguineti, D. Santonocito, P. Sapienza, M. Scarnera, J. Schnabel, J. Schumann, H. M. Schutte, J. Seneca, N. Sennan, P. Sevle, I. Sgura, R. Shanidze, A. Sharma, Y. Shitov, F. Šimkovic, A. Simonelli, A. Sinopoulou, B. Spisso, M. Spurio, D. Stavropoulos, I. Štekl, M. Taiuti, G. Takadze, Y. Tayalati, H. Thiersen, S. Thoudam, I. Tosta, Melo, B. Trocmé, V. Tsourapis, A. Tudorache, E. Tzamariudaki, A. Ukleja, A. Vacheret, V. Valsecchi, V. Van Elewyck, G. Vannoye, G. Vasileiadis, F. Vazquez de Sola, A. Veutro, S. Viola, D. Vivolo, A. van Vliet, E. de Wolf, I. Lhenry-Yvon, S. Zavatarelli, A. Zegarelli, D. Zito, J. D. Zornoza, J. Zúñiga, N. Zywucka","doi":"10.1007/JHEP04(2025)105","DOIUrl":"10.1007/JHEP04(2025)105","url":null,"abstract":"<p>In the era of precision measurements of neutrino oscillation parameters, it is necessary for experiments to disentangle discrepancies that may indicate physics beyond the Standard Model in the neutrino sector. KM3NeT/ORCA is a water Cherenkov neutrino detector under construction and anchored at the bottom of the Mediterranean Sea. The detector is designed to study the oscillations of atmospheric neutrinos and determine the neutrino mass ordering. This paper focuses on the initial configuration of ORCA, referred to as ORCA6, which comprises six out of the foreseen 115 detection units of photosensors. A high-purity neutrino sample was extracted during 2020 and 2021, corresponding to an exposure of 433 kton-years. This sample is analysed following a binned log-likelihood approach to search for invisible neutrino decay, in a three-flavour neutrino oscillation scenario, where the third neutrino mass state <i>ν</i><sub>3</sub> decays into an invisible state, e.g. a sterile neutrino. The resulting best fit of the invisible neutrino decay parameter is <span>( {alpha}_3={0.92}_{-0.57}^{+1.08}times {10}^{-4} )</span> eV<sup>2</sup>, corresponding to a scenario with <i>θ</i><sub>23</sub> in the second octant and normal neutrino mass ordering. The results are consistent with the Standard Model, within a 2.1 <i>σ</i> interval.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)105.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143840384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Ahyoune, A. Álvarez Melcón, S. Arguedas Cuendis, S. Calatroni, C. Cogollos, A. Díaz-Morcillo, B. Döbrich, J. D. Gallego, J. M. García-Barceló, B. Gimeno, J. Golm, X. Granados, J. Gutierrez, L. Herwig, I. G. Irastorza, N. Lamas, A. Lozano-Guerrero, C. Malbrunot, W. L. Millar, J. Miralda-Escudé, P. Navarro, J. R. Navarro-Madrid, T. Puig, M. Siodlaczek, G. T. Telles, W. Wuensch
{"title":"RADES axion search results with a high-temperature superconducting cavity in an 11.7 T magnet","authors":"S. Ahyoune, A. Álvarez Melcón, S. Arguedas Cuendis, S. Calatroni, C. Cogollos, A. Díaz-Morcillo, B. Döbrich, J. D. Gallego, J. M. García-Barceló, B. Gimeno, J. Golm, X. Granados, J. Gutierrez, L. Herwig, I. G. Irastorza, N. Lamas, A. Lozano-Guerrero, C. Malbrunot, W. L. Millar, J. Miralda-Escudé, P. Navarro, J. R. Navarro-Madrid, T. Puig, M. Siodlaczek, G. T. Telles, W. Wuensch","doi":"10.1007/JHEP04(2025)113","DOIUrl":"10.1007/JHEP04(2025)113","url":null,"abstract":"<p>We describe the results of a haloscope axion search performed with an 11.7 T dipole magnet at CERN. The search used a custom-made radio-frequency cavity coated with high-temperature superconducting tape. A set of 27 h of data at a resonant frequency of around 8.84 GHz was analysed. In the range of axion mass 36.5676 <i>μ</i>eV to 36.5699 <i>μ</i>eV, corresponding to a width of 554 kHz, no signal excess hinting at an axion-like particle was found. Correspondingly, in this mass range, a limit on the axion to photon coupling-strength was set in the range between g<sub><i>aγ</i></sub> ≳ 6.3 × 10<sup>−13</sup> GeV<sup>−1</sup> and g<sub><i>aγ</i></sub> ≳ 1.59 × 10<sup>−13</sup> GeV<sup>−1</sup> with a 95% confidence level.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)113.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143840446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The loop-by-loop Baikov representation — Strategies and implementation","authors":"Hjalte Frellesvig","doi":"10.1007/JHEP04(2025)111","DOIUrl":"10.1007/JHEP04(2025)111","url":null,"abstract":"<p>In this paper, we discuss the Baikov representation of Feynman integrals in its standard and loop-by-loop variants. The Baikov representation is a parametric representation, which has as its defining feature the fact that the integration variables are the propagators of the Feynman integral. For the loop-by-loop Baikov representation, we discuss in detail a strategy for how to make an optimal parametrization which is one that minimizes the number of extra integration variables that have to be introduced for a given Feynman integral. Furthermore, we present a Mathematica implementation, named BaikovPackage, that is able to generate the Baikov representation in its standard and loop-by-loop varieties. We also discuss some subtleties and open problems regarding Baikov representations.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)111.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gravity as a mesoscopic system","authors":"Pietro Pelliconi, Julian Sonner, Herman Verlinde","doi":"10.1007/JHEP04(2025)097","DOIUrl":"10.1007/JHEP04(2025)097","url":null,"abstract":"<p>We employ a probabilistic mesoscopic description to draw conceptual and quantitative analogies between Brownian motion and late-time fluctuations of thermal correlation functions in generic chaotic systems respecting ETH. In this framework, thermal correlation functions of ‘simple’ operators are described by stochastic processes, which are able to probe features of the microscopic theory only in a probabilistic sense. We apply this formalism to the case of semiclassical gravity in AdS<sub>3</sub>, showing that wormhole contributions can be naturally identified as moments of stochastic processes. We also point out a ‘Matryoshka doll’ recursive structure in which information is hidden in higher and higher moments, and which can be naturally justified within the stochastic framework. We then re-interpret the gravitational results from the boundary perspective, promoting the OPE data of the CFT to probability distributions. The outcome of this study shows that semiclassical gravity in AdS can be naturally interpreted as a mesoscopic description of quantum gravity, and a mesoscopic holographic duality can be framed as a moment-vs.-probability-distribution duality.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)097.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}