{"title":"动态chen - simons引力中具有自旋进动和偏心的双星的动力学和引力辐射","authors":"Zhao Li, Wen Zhao","doi":"10.1007/JHEP09(2025)187","DOIUrl":null,"url":null,"abstract":"<p>Testing parity symmetry constitutes a critical aspect in gravitational physics. As a representative parity-violating theory, dynamical Chern-Simons (dCS) gravity has attracted significant attention in recent gravitational wave (GW) studies. Numerous works have constrained the dCS theory through GW observations using quasi-circular waveform templates. Since GW parameter estimation depends critically on waveform template accuracy, improved source modeling and waveform construction are essential for tighter constraints on parity-violating gravity. This work explores the dynamics and gravitational radiation from the binary black hole systems with orbital eccentricity and spin precession. By extending the quasi-Keplerian parameterization, we solve the equations of motion including leading-order dCS corrections and precession effects. Furthermore, the conservative sectors of the gravitational and scalar radiation are presented, the corresponding energy and angular momentum loss are calculated, and the orbital decay is also investigated. Notably, because of the non-zero monopole scalar radiation, carrying energy but not angular momentum, the zero-eccentricity orbit is no longer the final stable state of binaries under radiation reaction. This work provides the theoretical foundation for the complete waveform construction in dCS gravity, benefiting the future gravitational parity-symmetry tests.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP09(2025)187.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamics and gravitational radiation of binaries with spin precession and eccentricity in dynamical Chern-Simons gravity\",\"authors\":\"Zhao Li, Wen Zhao\",\"doi\":\"10.1007/JHEP09(2025)187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Testing parity symmetry constitutes a critical aspect in gravitational physics. As a representative parity-violating theory, dynamical Chern-Simons (dCS) gravity has attracted significant attention in recent gravitational wave (GW) studies. Numerous works have constrained the dCS theory through GW observations using quasi-circular waveform templates. Since GW parameter estimation depends critically on waveform template accuracy, improved source modeling and waveform construction are essential for tighter constraints on parity-violating gravity. This work explores the dynamics and gravitational radiation from the binary black hole systems with orbital eccentricity and spin precession. By extending the quasi-Keplerian parameterization, we solve the equations of motion including leading-order dCS corrections and precession effects. Furthermore, the conservative sectors of the gravitational and scalar radiation are presented, the corresponding energy and angular momentum loss are calculated, and the orbital decay is also investigated. Notably, because of the non-zero monopole scalar radiation, carrying energy but not angular momentum, the zero-eccentricity orbit is no longer the final stable state of binaries under radiation reaction. This work provides the theoretical foundation for the complete waveform construction in dCS gravity, benefiting the future gravitational parity-symmetry tests.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 9\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP09(2025)187.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP09(2025)187\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP09(2025)187","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Dynamics and gravitational radiation of binaries with spin precession and eccentricity in dynamical Chern-Simons gravity
Testing parity symmetry constitutes a critical aspect in gravitational physics. As a representative parity-violating theory, dynamical Chern-Simons (dCS) gravity has attracted significant attention in recent gravitational wave (GW) studies. Numerous works have constrained the dCS theory through GW observations using quasi-circular waveform templates. Since GW parameter estimation depends critically on waveform template accuracy, improved source modeling and waveform construction are essential for tighter constraints on parity-violating gravity. This work explores the dynamics and gravitational radiation from the binary black hole systems with orbital eccentricity and spin precession. By extending the quasi-Keplerian parameterization, we solve the equations of motion including leading-order dCS corrections and precession effects. Furthermore, the conservative sectors of the gravitational and scalar radiation are presented, the corresponding energy and angular momentum loss are calculated, and the orbital decay is also investigated. Notably, because of the non-zero monopole scalar radiation, carrying energy but not angular momentum, the zero-eccentricity orbit is no longer the final stable state of binaries under radiation reaction. This work provides the theoretical foundation for the complete waveform construction in dCS gravity, benefiting the future gravitational parity-symmetry tests.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).