Hugo A. Camargo, Yichao Fu, Viktor Jahnke, Keun-Young Kim, Kuntal Pal
{"title":"自由概率混沌的量子特征","authors":"Hugo A. Camargo, Yichao Fu, Viktor Jahnke, Keun-Young Kim, Kuntal Pal","doi":"10.1007/JHEP10(2025)138","DOIUrl":null,"url":null,"abstract":"<p>A classical dynamical system can be viewed as a probability space equipped with a measure-preserving time evolution map, admitting a purely algebraic formulation in terms of the algebra of bounded functions on the phase space. Similarly, a quantum dynamical system can be formulated using an algebra of bounded operators in a non-commutative probability space equipped with a time evolution map. Chaos, in either setting, can be characterized by statistical independence between observables at <i>t</i> = 0 and <i>t</i> → ∞, leading to the vanishing of cumulants involving these observables. In the quantum case, the notion of independence is replaced by free independence, which only emerges in the thermodynamic limit (asymptotic freeness). In this work, we propose a definition of quantum chaos based on asymptotic freeness and investigate its emergence in quantum many-body systems including the mixed-field Ising model with a random magnetic field, a higher spin version of the same model, and the SYK model. The hallmark of asymptotic freeness is the emergence of the free convolution prediction for the spectrum of operators of the form <i>A</i>(0) + <i>B</i>(<i>t</i>), implying the vanishing of all free cumulants between <i>A</i>(0) and <i>B</i>(<i>t</i>) in the thermodynamic limit for an infinite-temperature thermal state. We systematically investigate the spectral properties of <i>A</i>(0) + <i>B</i>(<i>t</i>) in the above-mentioned models, show that fluctuations on top of the free convolution prediction follow universal Wigner-Dyson statistics, and discuss the connection with quantum chaos. Finally, we argue that free probability theory provides a rigorous framework for understanding quantum chaos, offering a unifying perspective that connects many different manifestations of it.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 10","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP10(2025)138.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum signatures of chaos from free probability\",\"authors\":\"Hugo A. Camargo, Yichao Fu, Viktor Jahnke, Keun-Young Kim, Kuntal Pal\",\"doi\":\"10.1007/JHEP10(2025)138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A classical dynamical system can be viewed as a probability space equipped with a measure-preserving time evolution map, admitting a purely algebraic formulation in terms of the algebra of bounded functions on the phase space. Similarly, a quantum dynamical system can be formulated using an algebra of bounded operators in a non-commutative probability space equipped with a time evolution map. Chaos, in either setting, can be characterized by statistical independence between observables at <i>t</i> = 0 and <i>t</i> → ∞, leading to the vanishing of cumulants involving these observables. In the quantum case, the notion of independence is replaced by free independence, which only emerges in the thermodynamic limit (asymptotic freeness). In this work, we propose a definition of quantum chaos based on asymptotic freeness and investigate its emergence in quantum many-body systems including the mixed-field Ising model with a random magnetic field, a higher spin version of the same model, and the SYK model. The hallmark of asymptotic freeness is the emergence of the free convolution prediction for the spectrum of operators of the form <i>A</i>(0) + <i>B</i>(<i>t</i>), implying the vanishing of all free cumulants between <i>A</i>(0) and <i>B</i>(<i>t</i>) in the thermodynamic limit for an infinite-temperature thermal state. We systematically investigate the spectral properties of <i>A</i>(0) + <i>B</i>(<i>t</i>) in the above-mentioned models, show that fluctuations on top of the free convolution prediction follow universal Wigner-Dyson statistics, and discuss the connection with quantum chaos. Finally, we argue that free probability theory provides a rigorous framework for understanding quantum chaos, offering a unifying perspective that connects many different manifestations of it.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 10\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP10(2025)138.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP10(2025)138\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP10(2025)138","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
A classical dynamical system can be viewed as a probability space equipped with a measure-preserving time evolution map, admitting a purely algebraic formulation in terms of the algebra of bounded functions on the phase space. Similarly, a quantum dynamical system can be formulated using an algebra of bounded operators in a non-commutative probability space equipped with a time evolution map. Chaos, in either setting, can be characterized by statistical independence between observables at t = 0 and t → ∞, leading to the vanishing of cumulants involving these observables. In the quantum case, the notion of independence is replaced by free independence, which only emerges in the thermodynamic limit (asymptotic freeness). In this work, we propose a definition of quantum chaos based on asymptotic freeness and investigate its emergence in quantum many-body systems including the mixed-field Ising model with a random magnetic field, a higher spin version of the same model, and the SYK model. The hallmark of asymptotic freeness is the emergence of the free convolution prediction for the spectrum of operators of the form A(0) + B(t), implying the vanishing of all free cumulants between A(0) and B(t) in the thermodynamic limit for an infinite-temperature thermal state. We systematically investigate the spectral properties of A(0) + B(t) in the above-mentioned models, show that fluctuations on top of the free convolution prediction follow universal Wigner-Dyson statistics, and discuss the connection with quantum chaos. Finally, we argue that free probability theory provides a rigorous framework for understanding quantum chaos, offering a unifying perspective that connects many different manifestations of it.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).