Journal of High Energy Physics最新文献

筛选
英文 中文
Schwinger vs Coleman: Magnetic charge renormalization 施文格与科尔曼磁荷重正化
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2024-11-12 DOI: 10.1007/JHEP11(2024)075
Joshua Newey, John Terning, Christopher B. Verhaaren
{"title":"Schwinger vs Coleman: Magnetic charge renormalization","authors":"Joshua Newey,&nbsp;John Terning,&nbsp;Christopher B. Verhaaren","doi":"10.1007/JHEP11(2024)075","DOIUrl":"10.1007/JHEP11(2024)075","url":null,"abstract":"<p>The kinetic mixing of two U(1) gauge theories can result in a massless photon that has perturbative couplings to both electric and magnetic charges. This framework can be used to perturbatively calculate in a quantum field theory with both kinds of charge. Here we reexamine the running of the magnetic charge, where the calculations of Schwinger and Coleman sharply disagree. We calculate the running of both electric and magnetic couplings and show that the disagreement between Schwinger and Coleman is due to an incomplete summation of topological terms in the perturbation series. We present a momentum space prescription for calculating the loop corrections in which the topological terms can be systematically separated for resummation. Somewhat in the spirit of modern amplitude methods we avoid using a vector potential and use the field strength itself, thereby trading gauge redundancy for the geometric redundancy of Stokes surfaces. The resulting running of the couplings demonstrates that Dirac charge quantization is independent of renormalization scale, as Coleman predicted. As a simple application we also bound the parameter space of magnetically charged states through the experimental measurement of the running of electromagnetic coupling.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)075.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of resummation on retarded Green’s function and greybody factor in AdS black holes 重和对 AdS 黑洞中迟滞格林函数和灰体因子的影响
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2024-11-12 DOI: 10.1007/JHEP11(2024)070
Julián Barragán Amado, Shankhadeep Chakrabortty, Arpit Maurya
{"title":"The effect of resummation on retarded Green’s function and greybody factor in AdS black holes","authors":"Julián Barragán Amado,&nbsp;Shankhadeep Chakrabortty,&nbsp;Arpit Maurya","doi":"10.1007/JHEP11(2024)070","DOIUrl":"10.1007/JHEP11(2024)070","url":null,"abstract":"<p>We investigate the retarded Green’s function and the greybody factor in asymptotically AdS black holes. Using the connection coefficients of the Heun equation, expressed in terms of the Nekrasov-Shatashvili (NS) free energy of an SU(2) supersymmetric gauge theory with four fundamental hypermultiplets, we derive asymptotic expansions for both the retarded Green’s function and the greybody factor in the small horizon limit. Furthermore, we compute the corrections to these asymptotic expansions resulting from the resummation procedure of the instanton part of the NS function.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)070.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SModelS v3: going beyond ( mathcal{Z} )2 topologies SModelS v3:超越 ( mathcal{Z} )2 拓扑
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2024-11-12 DOI: 10.1007/JHEP11(2024)074
Mohammad Mahdi Altakach, Sabine Kraml, Andre Lessa, Sahana Narasimha, Timothée Pascal, Camila Ramos, Yoxara Villamizar, Wolfgang Waltenberger
{"title":"SModelS v3: going beyond ( mathcal{Z} )2 topologies","authors":"Mohammad Mahdi Altakach,&nbsp;Sabine Kraml,&nbsp;Andre Lessa,&nbsp;Sahana Narasimha,&nbsp;Timothée Pascal,&nbsp;Camila Ramos,&nbsp;Yoxara Villamizar,&nbsp;Wolfgang Waltenberger","doi":"10.1007/JHEP11(2024)074","DOIUrl":"10.1007/JHEP11(2024)074","url":null,"abstract":"<p>SM<span>odel</span>S is a public tool for fast reinterpretation of LHC searches for new physics based on a large database of simplified model results. While previous versions were limited to models with a <span>( {mathcal{Z}}_2 )</span>-type symmetry, such as R-parity conserving supersymmetry, version 3 can now handle arbitrary signal topologies. To this end, the tool was fully restructured and now relies on a graph-based description of simplified model topologies. In this work, we present the main conceptual changes and novel features of SM<span>odel</span>S v3, together with the inclusion of new experimental searches for resonant production of spin-1 and spin-0 mediators with decays to quarks or to dark matter. Applying these results to a model containing two mediators, we discuss the interplay of resonance and missing energy searches, and the model’s coverage by the currently available simplified model results.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)074.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hawking radiation of nonrelativistic scalars: applications to pion and axion production 非相对论标量的霍金辐射:先锋和轴子产生的应用
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2024-11-12 DOI: 10.1007/JHEP11(2024)071
Hao-Ran Cui, Yuhsin Tsai, Tao Xu
{"title":"Hawking radiation of nonrelativistic scalars: applications to pion and axion production","authors":"Hao-Ran Cui,&nbsp;Yuhsin Tsai,&nbsp;Tao Xu","doi":"10.1007/JHEP11(2024)071","DOIUrl":"10.1007/JHEP11(2024)071","url":null,"abstract":"<p>In studying secondary gamma-ray emissions from Primordial Black Holes (PBHs), the production of scalar particles like pions and axion-like particles (ALPs) via Hawking radiation is crucial. While previous analyses assumed relativistic production, asteroid-mass PBHs, relevant to upcoming experiments like AMEGO-X, likely produce pions and ALPs non-relativistically when their masses exceed 10 MeV. To account for mass dependence in Hawking radiation, we revisit the greybody factors for massive scalars from Schwarzschild black holes, revealing significant mass corrections to particle production rates compared to the projected AMEGO-X sensitivity. We highlight the importance of considering non-relativistic <i>π</i><sup>0</sup> production in interpreting PBH gamma-ray signals, essential for determining PBH properties. Additionally, we comment on the potential suppression of pion production due to form factor effects when producing extended objects via Hawking radiation. We also provide an example code for calculating the Hawking radiation spectrum of massive scalar particles <img>.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)071.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bubble velocities and oscillon precursors in first-order phase transitions 一阶相变中的气泡速度和振荡前兆
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2024-11-12 DOI: 10.1007/JHEP11(2024)064
Dalila Pîrvu, Matthew C. Johnson, Sergey Sibiryakov
{"title":"Bubble velocities and oscillon precursors in first-order phase transitions","authors":"Dalila Pîrvu,&nbsp;Matthew C. Johnson,&nbsp;Sergey Sibiryakov","doi":"10.1007/JHEP11(2024)064","DOIUrl":"10.1007/JHEP11(2024)064","url":null,"abstract":"<p>Metastable ‘false’ vacuum states are an important feature of the Standard Model of particle physics and many theories beyond it. Describing the dynamics of a phase transition out of a false vacuum via the nucleation of bubbles is essential for understanding the cosmology of vacuum decay and the full spectrum of observables. In this paper, we study vacuum decay by numerically evolving ensembles of field theories in 1+1 dimensions from a metastable state. We demonstrate that for an initial Bose-Einstein distribution of fluctuations, bubbles form with a Gaussian spread of center-of-mass velocities and that bubble nucleation events are preceded by an oscillon — a long-lived, time-dependent, pseudo-stable configuration of the field. Defining an effective temperature from the long-wavelength amplitude of fluctuations in the ensemble of simulations, we find good agreement between theoretical finite temperature predictions and empirical measurements of the decay rate, velocity distribution and critical bubble solution. We comment on the generalization of our results and the implications for cosmological observables.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)064.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Final-state rescattering mechanism of charmed baryon decays 粲重子衰变的终态再散射机制
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2024-11-12 DOI: 10.1007/JHEP11(2024)072
Cai-Ping Jia, Hua-Yu Jiang, Jian-Peng Wang, Fu-Sheng Yu
{"title":"Final-state rescattering mechanism of charmed baryon decays","authors":"Cai-Ping Jia,&nbsp;Hua-Yu Jiang,&nbsp;Jian-Peng Wang,&nbsp;Fu-Sheng Yu","doi":"10.1007/JHEP11(2024)072","DOIUrl":"10.1007/JHEP11(2024)072","url":null,"abstract":"<p>The dynamical studies on the non-leptonic weak decays of charmed baryons are always challenging, due to the large non-perturbative contributions at the charm scale. In this work, we develop the final-state rescattering mechanism to study the two-body non-leptonic decays of charmed baryons. The final-state interaction is a physical picture of long-distance effects. Instead of using the Cutkosky rule to calculate the hadronic triangle diagrams which can only provide the imaginary part of decay amplitudes, we point out that the loop integral is more appropriate, as both the real parts and the imaginary parts of amplitudes can be calculated completely. In this way, it can be obtained for the non-trivial strong phases which are essential to calculate CP violations. With the physical picture of long-distance effects and the reasonable method of calculations, it is amazingly achieved that all the nine existing experimental data of branching fractions for the <span>( {Lambda}_c^{+} )</span> decays into an octet light baryon and a vector meson can be explained by only one parameter of the model. Besides, the decay asymmetries and CP violations are not sensitive to the model parameter, since the dependence on the parameter is mainly cancelled in the ratios, so that the theoretical uncertainties on these observables are lowered down.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)072.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Freudenthal duality in conformal field theory 共形场论中的弗赖登塔尔对偶性
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2024-11-08 DOI: 10.1007/JHEP11(2024)057
Arghya Chattopadhyay, Taniya Mandal, Alessio Marrani
{"title":"Freudenthal duality in conformal field theory","authors":"Arghya Chattopadhyay,&nbsp;Taniya Mandal,&nbsp;Alessio Marrani","doi":"10.1007/JHEP11(2024)057","DOIUrl":"10.1007/JHEP11(2024)057","url":null,"abstract":"<p>Rotational Freudenthal duality (RFD) relates two extremal Kerr-Newman (KN) black holes (BHs) with different angular momenta and electric-magnetic charges, but with the same Bekenstein-Hawking entropy. Through the Kerr/CFT correspondence (and its KN extension), a four-dimensional, asymptotically flat extremal KN BH is endowed with a dual thermal, two-dimensional conformal field theory (CFT) such that the Cardy entropy of the CFT is the same as the Bekenstein-Hawking entropy of the KN BH itself. Using this connection, we study the effect of the RFD on the thermal CFT dual to the KN extremal (or doubly-extremal) BH. We find that the RFD maps two different thermal, two-dimensional CFTs with different temperatures and central charges, but with the same asymptotic density of states, thereby matching the Cardy entropy. We also discuss the action of the RFD on doubly-extremal rotating BHs, finding a spurious branch in the non-rotating limit, and determining that for this class of BH solutions the image of the RFD necessarily over-rotates.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)057.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of Born cross sections of ( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}}^0 ) and search for charmonium(-like) states at ( sqrt{s} ) = 3.51–4.95 GeV Measurement of Born cross sections of ( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}}^0 ) and search for charmonium(-like) states at ( sqrt{s} ) = 3.51-4.95 GeV
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2024-11-08 DOI: 10.1007/JHEP11(2024)062
The BESIII collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, O. Afedulidis, X. C. Ai, R. Aliberti, A. Amoroso, Y. Bai, O. Bakina, I. Balossino, Y. Ban, H.-R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, X. Y. Chai, J. F. Chang, G. R. Che, Y. Z. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, Z. Y. Chen, S. K. Choi, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Yang Gao, S. Garbolino, I. Garzia, L. Ge, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, Q. P. Hu, S. L. Hu, T. Hu, Y. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Y. S. Huang, T. Hussain, F. Hölzken, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, J. H. Jeong, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, X. Q. Jia, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. S. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, L. Lavezzi, T. T. Lei, Z. H. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, K. Li, K. L. Li, L. J. Li, L. K. Li, Lei Li, M. H. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, S. X. Li, T. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Y. Li, X. Z. Li, Y. G. Li, Z. J. Li, Z. Y. Li, C. Liang, H. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, C. X. Lin, D. X. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. Liu, F. H. Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, Liang Liu, L. C. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, L. R. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, I. MacKay, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, W. D. Niu, Y. Niu, S. L. Olsen, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, C. F. Qiao, X. K. Qiao, J. J. Qin, L. Q. Qin, L. Y. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, K. J. Ren, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, M. Q. Ruan, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, J. L. Shi, J. Y. Shi, Q. Q. Shi, S. Y. Shi, X. Shi, J. J. Song, T. Z. Song, W. M. Song, Y. J. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, S. S Su, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, M. Tang, Y. A. Tang, L. Y. Tao, Q. T. Tao, M. Tat, J. X. Teng, V. Thoren, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, Y. Wan, S. J. Wang, B. Wang, B. L. Wang, Bo Wang, D. Y. Wang, F. Wang, H. J. Wang, J. J. Wang, J. P. Wang, K. Wang, L. L. Wang, M. Wang, N. Y. Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. H. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z. L. Wang, Z. Y. Wang, Ziyi Wang, D. H. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, X. H. Wu, Y. Wu, Y. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, S. Y. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, H. Y. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. Xu, W. L. Xu, X. P. Xu, Y. Xu, Y. C. Xu, Z. S. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, J. H. Yang, T. Yang, Y. Yang, Y. F. Yang, Y. F. Yang, Y. X. Yang, Z. W. Yang, Z. P. Yao, M. Ye, M. H. Ye, J. H. Yin, Junhao Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, M. C. Yu, T. Yu, X. D. Yu, Y. C. Yu, C. Z. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. A. Zafar, F. R. Zeng, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. C. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, P. Zhang, Q. Y. Zhang, R. Y. Zhang, S. H. Zhang, Shulei Zhang, X. M. Zhang, X. Y Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Yan Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, L. Zhao, Lei Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Y. Zhou, L. P. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, Z. C. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, T. J. Zhu, W. D. Zhu, Y. C. Zhu, Z. A. Zhu, J. H. Zou, J. Zu
{"title":"Measurement of Born cross sections of ( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}}^0 ) and search for charmonium(-like) states at ( sqrt{s} ) = 3.51–4.95 GeV","authors":"The BESIII collaboration,&nbsp;M. Ablikim,&nbsp;M. N. Achasov,&nbsp;P. Adlarson,&nbsp;O. Afedulidis,&nbsp;X. C. Ai,&nbsp;R. Aliberti,&nbsp;A. Amoroso,&nbsp;Y. Bai,&nbsp;O. Bakina,&nbsp;I. Balossino,&nbsp;Y. Ban,&nbsp;H.-R. Bao,&nbsp;V. Batozskaya,&nbsp;K. Begzsuren,&nbsp;N. Berger,&nbsp;M. Berlowski,&nbsp;M. Bertani,&nbsp;D. Bettoni,&nbsp;F. Bianchi,&nbsp;E. Bianco,&nbsp;A. Bortone,&nbsp;I. Boyko,&nbsp;R. A. Briere,&nbsp;A. Brueggemann,&nbsp;H. Cai,&nbsp;X. Cai,&nbsp;A. Calcaterra,&nbsp;G. F. Cao,&nbsp;N. Cao,&nbsp;S. A. Cetin,&nbsp;X. Y. Chai,&nbsp;J. F. Chang,&nbsp;G. R. Che,&nbsp;Y. Z. Che,&nbsp;G. Chelkov,&nbsp;C. Chen,&nbsp;C. H. Chen,&nbsp;Chao Chen,&nbsp;G. Chen,&nbsp;H. S. Chen,&nbsp;H. Y. Chen,&nbsp;M. L. Chen,&nbsp;S. J. Chen,&nbsp;S. L. Chen,&nbsp;S. M. Chen,&nbsp;T. Chen,&nbsp;X. R. Chen,&nbsp;X. T. Chen,&nbsp;Y. B. Chen,&nbsp;Y. Q. Chen,&nbsp;Z. J. Chen,&nbsp;Z. Y. Chen,&nbsp;S. K. Choi,&nbsp;G. Cibinetto,&nbsp;F. Cossio,&nbsp;J. J. Cui,&nbsp;H. L. Dai,&nbsp;J. P. Dai,&nbsp;A. Dbeyssi,&nbsp;R. E. de Boer,&nbsp;D. Dedovich,&nbsp;C. Q. Deng,&nbsp;Z. Y. Deng,&nbsp;A. Denig,&nbsp;I. Denysenko,&nbsp;M. Destefanis,&nbsp;F. De Mori,&nbsp;B. Ding,&nbsp;X. X. Ding,&nbsp;Y. Ding,&nbsp;Y. Ding,&nbsp;J. Dong,&nbsp;L. Y. Dong,&nbsp;M. Y. Dong,&nbsp;X. Dong,&nbsp;M. C. Du,&nbsp;S. X. Du,&nbsp;Y. Y. Duan,&nbsp;Z. H. Duan,&nbsp;P. Egorov,&nbsp;Y. H. Fan,&nbsp;J. Fang,&nbsp;J. Fang,&nbsp;S. S. Fang,&nbsp;W. X. Fang,&nbsp;Y. Fang,&nbsp;Y. Q. Fang,&nbsp;R. Farinelli,&nbsp;L. Fava,&nbsp;F. Feldbauer,&nbsp;G. Felici,&nbsp;C. Q. Feng,&nbsp;J. H. Feng,&nbsp;Y. T. Feng,&nbsp;M. Fritsch,&nbsp;C. D. Fu,&nbsp;J. L. Fu,&nbsp;Y. W. Fu,&nbsp;H. Gao,&nbsp;X. B. Gao,&nbsp;Y. N. Gao,&nbsp;Yang Gao,&nbsp;S. Garbolino,&nbsp;I. Garzia,&nbsp;L. Ge,&nbsp;P. T. Ge,&nbsp;Z. W. Ge,&nbsp;C. Geng,&nbsp;E. M. Gersabeck,&nbsp;A. Gilman,&nbsp;K. Goetzen,&nbsp;L. Gong,&nbsp;W. X. Gong,&nbsp;W. Gradl,&nbsp;S. Gramigna,&nbsp;M. Greco,&nbsp;M. H. Gu,&nbsp;Y. T. Gu,&nbsp;C. Y. Guan,&nbsp;A. Q. Guo,&nbsp;L. B. Guo,&nbsp;M. J. Guo,&nbsp;R. P. Guo,&nbsp;Y. P. Guo,&nbsp;A. Guskov,&nbsp;J. Gutierrez,&nbsp;K. L. Han,&nbsp;T. T. Han,&nbsp;F. Hanisch,&nbsp;X. Q. Hao,&nbsp;F. A. Harris,&nbsp;K. K. He,&nbsp;K. L. He,&nbsp;F. H. Heinsius,&nbsp;C. H. Heinz,&nbsp;Y. K. Heng,&nbsp;C. Herold,&nbsp;T. Holtmann,&nbsp;P. C. Hong,&nbsp;G. Y. Hou,&nbsp;X. T. Hou,&nbsp;Y. R. Hou,&nbsp;Z. L. Hou,&nbsp;B. Y. Hu,&nbsp;H. M. Hu,&nbsp;J. F. Hu,&nbsp;Q. P. Hu,&nbsp;S. L. Hu,&nbsp;T. Hu,&nbsp;Y. Hu,&nbsp;G. S. Huang,&nbsp;K. X. Huang,&nbsp;L. Q. Huang,&nbsp;X. T. Huang,&nbsp;Y. P. Huang,&nbsp;Y. S. Huang,&nbsp;T. Hussain,&nbsp;F. Hölzken,&nbsp;N. Hüsken,&nbsp;N. in der Wiesche,&nbsp;J. Jackson,&nbsp;S. Janchiv,&nbsp;J. H. Jeong,&nbsp;Q. Ji,&nbsp;Q. P. Ji,&nbsp;W. Ji,&nbsp;X. B. Ji,&nbsp;X. L. Ji,&nbsp;Y. Y. Ji,&nbsp;X. Q. Jia,&nbsp;Z. K. Jia,&nbsp;D. Jiang,&nbsp;H. B. Jiang,&nbsp;P. C. Jiang,&nbsp;S. S. Jiang,&nbsp;T. J. Jiang,&nbsp;X. S. Jiang,&nbsp;Y. Jiang,&nbsp;J. B. Jiao,&nbsp;J. K. Jiao,&nbsp;Z. Jiao,&nbsp;S. Jin,&nbsp;Y. Jin,&nbsp;M. Q. Jing,&nbsp;X. M. Jing,&nbsp;T. Johansson,&nbsp;S. Kabana,&nbsp;N. Kalantar-Nayestanaki,&nbsp;X. L. Kang,&nbsp;X. S. Kang,&nbsp;M. Kavatsyuk,&nbsp;B. C. Ke,&nbsp;V. Khachatryan,&nbsp;A. Khoukaz,&nbsp;R. Kiuchi,&nbsp;O. B. Kolcu,&nbsp;B. Kopf,&nbsp;M. Kuessner,&nbsp;X. Kui,&nbsp;N. Kumar,&nbsp;A. Kupsc,&nbsp;W. Kühn,&nbsp;L. Lavezzi,&nbsp;T. T. Lei,&nbsp;Z. H. Lei,&nbsp;M. Lellmann,&nbsp;T. Lenz,&nbsp;C. Li,&nbsp;C. Li,&nbsp;C. H. Li,&nbsp;Cheng Li,&nbsp;D. M. Li,&nbsp;F. Li,&nbsp;G. Li,&nbsp;H. B. Li,&nbsp;H. J. Li,&nbsp;H. N. Li,&nbsp;Hui Li,&nbsp;J. R. Li,&nbsp;J. S. Li,&nbsp;K. Li,&nbsp;K. L. Li,&nbsp;L. J. Li,&nbsp;L. K. Li,&nbsp;Lei Li,&nbsp;M. H. Li,&nbsp;P. R. Li,&nbsp;Q. M. Li,&nbsp;Q. X. Li,&nbsp;R. Li,&nbsp;S. X. Li,&nbsp;T. Li,&nbsp;W. D. Li,&nbsp;W. G. Li,&nbsp;X. Li,&nbsp;X. H. Li,&nbsp;X. L. Li,&nbsp;X. Y. Li,&nbsp;X. Z. Li,&nbsp;Y. G. Li,&nbsp;Z. J. Li,&nbsp;Z. Y. Li,&nbsp;C. Liang,&nbsp;H. Liang,&nbsp;H. Liang,&nbsp;Y. F. Liang,&nbsp;Y. T. Liang,&nbsp;G. R. Liao,&nbsp;Y. P. Liao,&nbsp;J. Libby,&nbsp;A. Limphirat,&nbsp;C. C. Lin,&nbsp;C. X. Lin,&nbsp;D. X. Lin,&nbsp;T. Lin,&nbsp;B. J. Liu,&nbsp;B. X. Liu,&nbsp;C. Liu,&nbsp;C. X. Liu,&nbsp;F. Liu,&nbsp;F. H. Liu,&nbsp;Feng Liu,&nbsp;G. M. Liu,&nbsp;H. Liu,&nbsp;H. B. Liu,&nbsp;H. H. Liu,&nbsp;H. M. Liu,&nbsp;Huihui Liu,&nbsp;J. B. Liu,&nbsp;J. Y. Liu,&nbsp;K. Liu,&nbsp;K. Y. Liu,&nbsp;Ke Liu,&nbsp;L. Liu,&nbsp;Liang Liu,&nbsp;L. C. Liu,&nbsp;Lu Liu,&nbsp;M. H. Liu,&nbsp;P. L. Liu,&nbsp;Q. Liu,&nbsp;S. B. Liu,&nbsp;T. Liu,&nbsp;W. K. Liu,&nbsp;W. M. Liu,&nbsp;X. Liu,&nbsp;X. Liu,&nbsp;Y. Liu,&nbsp;Y. Liu,&nbsp;Y. B. Liu,&nbsp;Z. A. Liu,&nbsp;Z. D. Liu,&nbsp;Z. Q. Liu,&nbsp;X. C. Lou,&nbsp;F. X. Lu,&nbsp;H. J. Lu,&nbsp;J. G. Lu,&nbsp;X. L. Lu,&nbsp;Y. Lu,&nbsp;Y. P. Lu,&nbsp;Z. H. Lu,&nbsp;C. L. Luo,&nbsp;J. R. Luo,&nbsp;M. X. Luo,&nbsp;T. Luo,&nbsp;X. L. Luo,&nbsp;X. R. Lyu,&nbsp;Y. F. Lyu,&nbsp;F. C. Ma,&nbsp;H. Ma,&nbsp;H. L. Ma,&nbsp;J. L. Ma,&nbsp;L. L. Ma,&nbsp;L. R. Ma,&nbsp;M. M. Ma,&nbsp;Q. M. Ma,&nbsp;R. Q. Ma,&nbsp;T. Ma,&nbsp;X. T. Ma,&nbsp;X. Y. Ma,&nbsp;Y. M. Ma,&nbsp;F. E. Maas,&nbsp;I. MacKay,&nbsp;M. Maggiora,&nbsp;S. Malde,&nbsp;Y. J. Mao,&nbsp;Z. P. Mao,&nbsp;S. Marcello,&nbsp;Z. X. Meng,&nbsp;J. G. Messchendorp,&nbsp;G. Mezzadri,&nbsp;H. Miao,&nbsp;T. J. Min,&nbsp;R. E. Mitchell,&nbsp;X. H. Mo,&nbsp;B. Moses,&nbsp;N. Yu. Muchnoi,&nbsp;J. Muskalla,&nbsp;Y. Nefedov,&nbsp;F. Nerling,&nbsp;L. S. Nie,&nbsp;I. B. Nikolaev,&nbsp;Z. Ning,&nbsp;S. Nisar,&nbsp;Q. L. Niu,&nbsp;W. D. Niu,&nbsp;Y. Niu,&nbsp;S. L. Olsen,&nbsp;S. L. Olsen,&nbsp;Q. Ouyang,&nbsp;S. Pacetti,&nbsp;X. Pan,&nbsp;Y. Pan,&nbsp;A. Pathak,&nbsp;Y. P. Pei,&nbsp;M. Pelizaeus,&nbsp;H. P. Peng,&nbsp;Y. Y. Peng,&nbsp;K. Peters,&nbsp;J. L. Ping,&nbsp;R. G. Ping,&nbsp;S. Plura,&nbsp;V. Prasad,&nbsp;F. Z. Qi,&nbsp;H. Qi,&nbsp;H. R. Qi,&nbsp;M. Qi,&nbsp;T. Y. Qi,&nbsp;S. Qian,&nbsp;W. B. Qian,&nbsp;C. F. Qiao,&nbsp;X. K. Qiao,&nbsp;J. J. Qin,&nbsp;L. Q. Qin,&nbsp;L. Y. Qin,&nbsp;X. P. Qin,&nbsp;X. S. Qin,&nbsp;Z. H. Qin,&nbsp;J. F. Qiu,&nbsp;Z. H. Qu,&nbsp;C. F. Redmer,&nbsp;K. J. Ren,&nbsp;A. Rivetti,&nbsp;M. Rolo,&nbsp;G. Rong,&nbsp;Ch. Rosner,&nbsp;M. Q. Ruan,&nbsp;S. N. Ruan,&nbsp;N. Salone,&nbsp;A. Sarantsev,&nbsp;Y. Schelhaas,&nbsp;K. Schoenning,&nbsp;M. Scodeggio,&nbsp;K. Y. Shan,&nbsp;W. Shan,&nbsp;X. Y. Shan,&nbsp;Z. J. Shang,&nbsp;J. F. Shangguan,&nbsp;L. G. Shao,&nbsp;M. Shao,&nbsp;C. P. Shen,&nbsp;H. F. Shen,&nbsp;W. H. Shen,&nbsp;X. Y. Shen,&nbsp;B. A. Shi,&nbsp;H. Shi,&nbsp;J. L. Shi,&nbsp;J. Y. Shi,&nbsp;Q. Q. Shi,&nbsp;S. Y. Shi,&nbsp;X. Shi,&nbsp;J. J. Song,&nbsp;T. Z. Song,&nbsp;W. M. Song,&nbsp;Y. J. Song,&nbsp;Y. X. Song,&nbsp;S. Sosio,&nbsp;S. Spataro,&nbsp;F. Stieler,&nbsp;S. S Su,&nbsp;Y. J. Su,&nbsp;G. B. Sun,&nbsp;G. X. Sun,&nbsp;H. Sun,&nbsp;H. K. Sun,&nbsp;J. F. Sun,&nbsp;K. Sun,&nbsp;L. Sun,&nbsp;S. S. Sun,&nbsp;T. Sun,&nbsp;W. Y. Sun,&nbsp;Y. Sun,&nbsp;Y. J. Sun,&nbsp;Y. Z. Sun,&nbsp;Z. Q. Sun,&nbsp;Z. T. Sun,&nbsp;C. J. Tang,&nbsp;G. Y. Tang,&nbsp;J. Tang,&nbsp;M. Tang,&nbsp;Y. A. Tang,&nbsp;L. Y. Tao,&nbsp;Q. T. Tao,&nbsp;M. Tat,&nbsp;J. X. Teng,&nbsp;V. Thoren,&nbsp;W. H. Tian,&nbsp;Y. Tian,&nbsp;Z. F. Tian,&nbsp;I. Uman,&nbsp;Y. Wan,&nbsp;S. J. Wang,&nbsp;B. Wang,&nbsp;B. L. Wang,&nbsp;Bo Wang,&nbsp;D. Y. Wang,&nbsp;F. Wang,&nbsp;H. J. Wang,&nbsp;J. J. Wang,&nbsp;J. P. Wang,&nbsp;K. Wang,&nbsp;L. L. Wang,&nbsp;M. Wang,&nbsp;N. Y. Wang,&nbsp;S. Wang,&nbsp;S. Wang,&nbsp;T. Wang,&nbsp;T. J. Wang,&nbsp;W. Wang,&nbsp;W. Wang,&nbsp;W. P. Wang,&nbsp;X. Wang,&nbsp;X. F. Wang,&nbsp;X. J. Wang,&nbsp;X. L. Wang,&nbsp;X. N. Wang,&nbsp;Y. Wang,&nbsp;Y. D. Wang,&nbsp;Y. F. Wang,&nbsp;Y. H. Wang,&nbsp;Y. L. Wang,&nbsp;Y. N. Wang,&nbsp;Y. Q. Wang,&nbsp;Yaqian Wang,&nbsp;Yi Wang,&nbsp;Z. Wang,&nbsp;Z. L. Wang,&nbsp;Z. Y. Wang,&nbsp;Ziyi Wang,&nbsp;D. H. Wei,&nbsp;F. Weidner,&nbsp;S. P. Wen,&nbsp;Y. R. Wen,&nbsp;U. Wiedner,&nbsp;G. Wilkinson,&nbsp;M. Wolke,&nbsp;L. Wollenberg,&nbsp;C. Wu,&nbsp;J. F. Wu,&nbsp;L. H. Wu,&nbsp;L. J. Wu,&nbsp;X. Wu,&nbsp;X. H. Wu,&nbsp;Y. Wu,&nbsp;Y. H. Wu,&nbsp;Y. J. Wu,&nbsp;Z. Wu,&nbsp;L. Xia,&nbsp;X. M. Xian,&nbsp;B. H. Xiang,&nbsp;T. Xiang,&nbsp;D. Xiao,&nbsp;G. Y. Xiao,&nbsp;S. Y. Xiao,&nbsp;Y. L. Xiao,&nbsp;Z. J. Xiao,&nbsp;C. Xie,&nbsp;X. H. Xie,&nbsp;Y. Xie,&nbsp;Y. G. Xie,&nbsp;Y. H. Xie,&nbsp;Z. P. Xie,&nbsp;T. Y. Xing,&nbsp;C. F. Xu,&nbsp;C. J. Xu,&nbsp;G. F. Xu,&nbsp;H. Y. Xu,&nbsp;M. Xu,&nbsp;Q. J. Xu,&nbsp;Q. N. Xu,&nbsp;W. Xu,&nbsp;W. L. Xu,&nbsp;X. P. Xu,&nbsp;Y. Xu,&nbsp;Y. C. Xu,&nbsp;Z. S. Xu,&nbsp;F. Yan,&nbsp;L. Yan,&nbsp;W. B. Yan,&nbsp;W. C. Yan,&nbsp;X. Q. Yan,&nbsp;H. J. Yang,&nbsp;H. L. Yang,&nbsp;H. X. Yang,&nbsp;J. H. Yang,&nbsp;T. Yang,&nbsp;Y. Yang,&nbsp;Y. F. Yang,&nbsp;Y. F. Yang,&nbsp;Y. X. Yang,&nbsp;Z. W. Yang,&nbsp;Z. P. Yao,&nbsp;M. Ye,&nbsp;M. H. Ye,&nbsp;J. H. Yin,&nbsp;Junhao Yin,&nbsp;Z. Y. You,&nbsp;B. X. Yu,&nbsp;C. X. Yu,&nbsp;G. Yu,&nbsp;J. S. Yu,&nbsp;M. C. Yu,&nbsp;T. Yu,&nbsp;X. D. Yu,&nbsp;Y. C. Yu,&nbsp;C. Z. Yuan,&nbsp;J. Yuan,&nbsp;J. Yuan,&nbsp;L. Yuan,&nbsp;S. C. Yuan,&nbsp;Y. Yuan,&nbsp;Z. Y. Yuan,&nbsp;C. X. Yue,&nbsp;A. A. Zafar,&nbsp;F. R. Zeng,&nbsp;S. H. Zeng,&nbsp;X. Zeng,&nbsp;Y. Zeng,&nbsp;Y. J. Zeng,&nbsp;Y. J. Zeng,&nbsp;X. Y. Zhai,&nbsp;Y. C. Zhai,&nbsp;Y. H. Zhan,&nbsp;A. Q. Zhang,&nbsp;B. L. Zhang,&nbsp;B. X. Zhang,&nbsp;D. H. Zhang,&nbsp;G. Y. Zhang,&nbsp;H. Zhang,&nbsp;H. Zhang,&nbsp;H. C. Zhang,&nbsp;H. H. Zhang,&nbsp;H. H. Zhang,&nbsp;H. Q. Zhang,&nbsp;H. R. Zhang,&nbsp;H. Y. Zhang,&nbsp;J. Zhang,&nbsp;J. Zhang,&nbsp;J. J. Zhang,&nbsp;J. L. Zhang,&nbsp;J. Q. Zhang,&nbsp;J. S. Zhang,&nbsp;J. W. Zhang,&nbsp;J. X. Zhang,&nbsp;J. Y. Zhang,&nbsp;J. Z. Zhang,&nbsp;Jianyu Zhang,&nbsp;L. M. Zhang,&nbsp;Lei Zhang,&nbsp;P. Zhang,&nbsp;Q. Y. Zhang,&nbsp;R. Y. Zhang,&nbsp;S. H. Zhang,&nbsp;Shulei Zhang,&nbsp;X. M. Zhang,&nbsp;X. Y Zhang,&nbsp;X. Y. Zhang,&nbsp;Y. Zhang,&nbsp;Y. Zhang,&nbsp;Y. T. Zhang,&nbsp;Y. H. Zhang,&nbsp;Y. M. Zhang,&nbsp;Yan Zhang,&nbsp;Z. D. Zhang,&nbsp;Z. H. Zhang,&nbsp;Z. L. Zhang,&nbsp;Z. Y. Zhang,&nbsp;Z. Y. Zhang,&nbsp;Z. Z. Zhang,&nbsp;G. Zhao,&nbsp;J. Y. Zhao,&nbsp;J. Z. Zhao,&nbsp;L. Zhao,&nbsp;Lei Zhao,&nbsp;M. G. Zhao,&nbsp;N. Zhao,&nbsp;R. P. Zhao,&nbsp;S. J. Zhao,&nbsp;Y. B. Zhao,&nbsp;Y. X. Zhao,&nbsp;Z. G. Zhao,&nbsp;A. Zhemchugov,&nbsp;B. Zheng,&nbsp;B. M. Zheng,&nbsp;J. P. Zheng,&nbsp;W. J. Zheng,&nbsp;Y. H. Zheng,&nbsp;B. Zhong,&nbsp;X. Zhong,&nbsp;H. Zhou,&nbsp;J. Y. Zhou,&nbsp;L. P. Zhou,&nbsp;S. Zhou,&nbsp;X. Zhou,&nbsp;X. K. Zhou,&nbsp;X. R. Zhou,&nbsp;X. Y. Zhou,&nbsp;Y. Z. Zhou,&nbsp;Z. C. Zhou,&nbsp;A. N. Zhu,&nbsp;J. Zhu,&nbsp;K. Zhu,&nbsp;K. J. Zhu,&nbsp;K. S. Zhu,&nbsp;L. Zhu,&nbsp;L. X. Zhu,&nbsp;S. H. Zhu,&nbsp;T. J. Zhu,&nbsp;W. D. Zhu,&nbsp;Y. C. Zhu,&nbsp;Z. A. Zhu,&nbsp;J. H. Zou,&nbsp;J. Zu","doi":"10.1007/JHEP11(2024)062","DOIUrl":"10.1007/JHEP11(2024)062","url":null,"abstract":"<p>Using <i>e</i><sup>+</sup><i>e</i><sup><i>−</i></sup> collision data collected by the BESIII detector at BEPCII corresponding to an integrated luminosity of 30 fb<sup><i>−</i>1</sup>, we measure Born cross sections and effective form factors for the process <span>( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}}^0 )</span> at forty-five center-of-mass energies between 3.51 and 4.95 GeV. The dressed cross section is fitted, assuming a power-law function plus a charmonium(-like) state, i.e., <i>ψ</i>(3770), <i>ψ</i>(4040), <i>ψ</i>(4160), <i>ψ</i>(4230), <i>ψ</i>(4360), <i>ψ</i>(4415) or <i>ψ</i>(4660). No significant charmonium(-like) state decaying into <span>( {Xi}^0{overline{Xi}}^0 )</span> is observed. Upper limits at the 90% confidence level on the product of the branching fraction and the electronic partial width are provided for each decay. In addition, ratios of the Born cross sections and the effective form factors for <span>( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}}^0 )</span> and <span>( {e}^{+}{e}^{-}to {Xi}^{-}{overline{Xi}}^{+} )</span> are also presented to test isospin symmetry and the vector meson dominance model.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)062.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stringy forces in the black hole interior 黑洞内部的弦力
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2024-11-08 DOI: 10.1007/JHEP11(2024)063
Yoav Zigdon
{"title":"Stringy forces in the black hole interior","authors":"Yoav Zigdon","doi":"10.1007/JHEP11(2024)063","DOIUrl":"10.1007/JHEP11(2024)063","url":null,"abstract":"<p>Effective field theories break down inside large black holes on macroscopic scales when tidal forces are string-sized. If <i>r</i><sub>0</sub> is the horizon radius and <i>α</i>′ is the square of the string scale, the 4D Schwarzschild interior is strongly curved at (<i>r</i><sub>0</sub><i>α</i><sup>′</sup>)<sup>1/3</sup>. Infalling massless probes that reach this scale stretch and become excited strings. I generalize this picture for a wide class of black hole solutions in string theory. For the black hole dual to the large-<i>N</i> BFSS model in a thermal state, and denoting <i>ℓ</i><sub><i>P</i></sub> the Planck length, tidal forces are stringy at <span>( {r}_0{left(frac{r_0}{N^{1/3}{ell}_P}right)}^{3/11} )</span>, which is greater than the scale where string perturbation theory breaks down for sufficiently large <i>r</i><sub>0</sub><i>/ℓ</i><sub><i>P</i></sub>. For 4D Kerr, there is a range of spin parameters for which the inner horizon is to the future of the scale of stringy curvature. These results specify the portion of black hole interior solutions where effective field theory can be used; beyond these scales, one must resort to other methods.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)063.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing the understanding of energy-energy correlators in heavy-ion collisions 推进对重离子碰撞中能量相关器的理解
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2024-11-08 DOI: 10.1007/JHEP11(2024)060
João Barata, Paul Caucal, Alba Soto-Ontoso, Robert Szafron
{"title":"Advancing the understanding of energy-energy correlators in heavy-ion collisions","authors":"João Barata,&nbsp;Paul Caucal,&nbsp;Alba Soto-Ontoso,&nbsp;Robert Szafron","doi":"10.1007/JHEP11(2024)060","DOIUrl":"10.1007/JHEP11(2024)060","url":null,"abstract":"<p>We investigate the collinear limit of the energy-energy correlator (EEC) in a heavy-ion context. First, we revisit the leading-logarithmic (LL) resummation of this observable in vacuum following a <i>diagrammatic</i> approach. We argue that this route allows to naturally incorporate medium-induced effects into the all-orders structure systematically. As an example, we show how the phase-space constraints imposed by the static medium on vacuum-like emissions can be incorporated into the LL result by modifying the anomalous dimensions. On the fixed-order side, we calculate the <span>( mathcal{O} )</span>(<i>α</i><sub><i>s</i></sub>) expansion of the in-medium EEC for a <i>γ</i> → <span>( qoverline{q} )</span> splitting with arbitrary kinematics including, for the first time, subleading colour corrections. When comparing this result to previously used approximations in the literature, we find up to <span>( mathcal{O} )</span>(1) deviations in the regime of interest for jet quenching signatures. Energy loss effects are also quantified and further suppress the EEC at large angles. These semi-analytic studies are complemented with a phenomenological study using the jet quenching Monte Carlo JetMed. Finally, we argue that the imprint of medium-induced effects in energy-energy correlators can be enhanced by using an alternative definition that takes as input Lund primary declusterings instead of particles.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)060.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信