二维黑洞的热标量场应力张量及其近视界性质

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
Saurav Samanta, Bibhas Ranjan Majhi
{"title":"二维黑洞的热标量场应力张量及其近视界性质","authors":"Saurav Samanta,&nbsp;Bibhas Ranjan Majhi","doi":"10.1007/JHEP10(2025)183","DOIUrl":null,"url":null,"abstract":"<p>We calculate the thermal renormalized energy-momentum tensor components of a massless scalar field, leading to trace anomaly, on a (1 + 1) dimensional static black hole spacetime. Using these, the energy density and flux, seen by both static and freely-falling observers, are evaluated. Interestingly for both these observers the aforementioned quantities in the thermal version of Unruh and Boulware states are finite at the horizon when the scalar field is in thermal equilibrium with the horizon temperature (given by the Hawking expression). Whereas in Hartle-Hawking thermal state both the observers see finite energy-density and flux at the horizon, irrespective of the value of field temperature. Particularly in the case of Schwarzschild spacetime a freely falling observer, starts with initial zero velocity, finds its initial critical position <span>\\( {r}_i^c \\)</span> = (3/2)<i>r</i><sub><i>H</i></sub>, where <i>r</i><sub><i>H</i></sub> is the horizon radius for which energy-density vanishes.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 10","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP10(2025)183.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermal scalar field stress tensor on a two dimensional black hole and its near horizon properties\",\"authors\":\"Saurav Samanta,&nbsp;Bibhas Ranjan Majhi\",\"doi\":\"10.1007/JHEP10(2025)183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We calculate the thermal renormalized energy-momentum tensor components of a massless scalar field, leading to trace anomaly, on a (1 + 1) dimensional static black hole spacetime. Using these, the energy density and flux, seen by both static and freely-falling observers, are evaluated. Interestingly for both these observers the aforementioned quantities in the thermal version of Unruh and Boulware states are finite at the horizon when the scalar field is in thermal equilibrium with the horizon temperature (given by the Hawking expression). Whereas in Hartle-Hawking thermal state both the observers see finite energy-density and flux at the horizon, irrespective of the value of field temperature. Particularly in the case of Schwarzschild spacetime a freely falling observer, starts with initial zero velocity, finds its initial critical position <span>\\\\( {r}_i^c \\\\)</span> = (3/2)<i>r</i><sub><i>H</i></sub>, where <i>r</i><sub><i>H</i></sub> is the horizon radius for which energy-density vanishes.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 10\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP10(2025)183.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP10(2025)183\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP10(2025)183","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了在(1 + 1)维静态黑洞时空中导致轨迹异常的无质量标量场的热重归一化能量-动量张量分量。利用这些,可以对静态和自由落体观察者所看到的能量密度和通量进行评估。有趣的是,对于这两位观测者来说,当标量场与视界温度(由霍金表达式给出)处于热平衡时,上述昂鲁和博尔维尔状态的热版本中的量在视界上是有限的。而在哈特尔-霍金热态中,观察者在视界上看到的能量密度和通量都是有限的,与场温度的值无关。特别是在史瓦西时空的情况下,一个自由落体的观察者,从初始速度为零开始,找到它的初始临界位置\( {r}_i^c \) = (3/2)rH,其中rH是能量密度消失的视界半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal scalar field stress tensor on a two dimensional black hole and its near horizon properties

We calculate the thermal renormalized energy-momentum tensor components of a massless scalar field, leading to trace anomaly, on a (1 + 1) dimensional static black hole spacetime. Using these, the energy density and flux, seen by both static and freely-falling observers, are evaluated. Interestingly for both these observers the aforementioned quantities in the thermal version of Unruh and Boulware states are finite at the horizon when the scalar field is in thermal equilibrium with the horizon temperature (given by the Hawking expression). Whereas in Hartle-Hawking thermal state both the observers see finite energy-density and flux at the horizon, irrespective of the value of field temperature. Particularly in the case of Schwarzschild spacetime a freely falling observer, starts with initial zero velocity, finds its initial critical position \( {r}_i^c \) = (3/2)rH, where rH is the horizon radius for which energy-density vanishes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信