{"title":"最轻的胶团的质量","authors":"Cesar Ayala, Antonio Pineda","doi":"10.1007/JHEP10(2025)176","DOIUrl":null,"url":null,"abstract":"<p>We consider QCD with <i>n</i><sub><i>f</i></sub> = 0 and <i>n</i><sub><i>f</i></sub> = 3 light quarks. We present the most up-to-date determinations for the normalizations of the leading renormalons of the pole mass, the singlet static potential, the octet static potential, and the gluelump energy. These read <span>\\( {Z}_m^{\\overline{\\textrm{MS}}} \\)</span> = <span>\\( -{Z}_{V_s}^{\\overline{\\textrm{MS}}}/2 \\)</span> = {0.604(17), 0.551(20)}, <span>\\( {Z}_{V_o}^{\\overline{\\textrm{MS}}} \\)</span> = {0.136(8), 0.121(13)}, and <span>\\( {Z}_A^{\\overline{\\textrm{MS}}} \\)</span> = {–1.343(36), –1.224(43)}, for <i>n</i><sub><i>f</i></sub> = 0 and <i>n</i><sub><i>f</i></sub> = 3, respectively. For <i>n</i><sub><i>f</i></sub> = 0, we obtain two independent renormalization group invariant and renormalization scale independent determinations of the energy of the ground state gluelump in the principal value summation scheme: <span>\\( {\\Lambda}_B^{\\textrm{PV}}=2.47(9){r}_0^{-1} \\)</span> and <span>\\( {\\Lambda}_B^{\\textrm{PV}}=2.38(11){r}_0^{-1} \\)</span> where <span>\\( {r}_0^{-1} \\)</span> ≈ 400 MeV. Averaging these results, we obtain <span>\\( {\\Lambda}_B^{\\textrm{PV}}=2.44(7){r}_0^{-1} \\)</span>.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 10","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP10(2025)176.pdf","citationCount":"0","resultStr":"{\"title\":\"The mass of the lightest gluelump\",\"authors\":\"Cesar Ayala, Antonio Pineda\",\"doi\":\"10.1007/JHEP10(2025)176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider QCD with <i>n</i><sub><i>f</i></sub> = 0 and <i>n</i><sub><i>f</i></sub> = 3 light quarks. We present the most up-to-date determinations for the normalizations of the leading renormalons of the pole mass, the singlet static potential, the octet static potential, and the gluelump energy. These read <span>\\\\( {Z}_m^{\\\\overline{\\\\textrm{MS}}} \\\\)</span> = <span>\\\\( -{Z}_{V_s}^{\\\\overline{\\\\textrm{MS}}}/2 \\\\)</span> = {0.604(17), 0.551(20)}, <span>\\\\( {Z}_{V_o}^{\\\\overline{\\\\textrm{MS}}} \\\\)</span> = {0.136(8), 0.121(13)}, and <span>\\\\( {Z}_A^{\\\\overline{\\\\textrm{MS}}} \\\\)</span> = {–1.343(36), –1.224(43)}, for <i>n</i><sub><i>f</i></sub> = 0 and <i>n</i><sub><i>f</i></sub> = 3, respectively. For <i>n</i><sub><i>f</i></sub> = 0, we obtain two independent renormalization group invariant and renormalization scale independent determinations of the energy of the ground state gluelump in the principal value summation scheme: <span>\\\\( {\\\\Lambda}_B^{\\\\textrm{PV}}=2.47(9){r}_0^{-1} \\\\)</span> and <span>\\\\( {\\\\Lambda}_B^{\\\\textrm{PV}}=2.38(11){r}_0^{-1} \\\\)</span> where <span>\\\\( {r}_0^{-1} \\\\)</span> ≈ 400 MeV. Averaging these results, we obtain <span>\\\\( {\\\\Lambda}_B^{\\\\textrm{PV}}=2.44(7){r}_0^{-1} \\\\)</span>.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 10\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP10(2025)176.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP10(2025)176\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP10(2025)176","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
We consider QCD with nf = 0 and nf = 3 light quarks. We present the most up-to-date determinations for the normalizations of the leading renormalons of the pole mass, the singlet static potential, the octet static potential, and the gluelump energy. These read \( {Z}_m^{\overline{\textrm{MS}}} \) = \( -{Z}_{V_s}^{\overline{\textrm{MS}}}/2 \) = {0.604(17), 0.551(20)}, \( {Z}_{V_o}^{\overline{\textrm{MS}}} \) = {0.136(8), 0.121(13)}, and \( {Z}_A^{\overline{\textrm{MS}}} \) = {–1.343(36), –1.224(43)}, for nf = 0 and nf = 3, respectively. For nf = 0, we obtain two independent renormalization group invariant and renormalization scale independent determinations of the energy of the ground state gluelump in the principal value summation scheme: \( {\Lambda}_B^{\textrm{PV}}=2.47(9){r}_0^{-1} \) and \( {\Lambda}_B^{\textrm{PV}}=2.38(11){r}_0^{-1} \) where \( {r}_0^{-1} \) ≈ 400 MeV. Averaging these results, we obtain \( {\Lambda}_B^{\textrm{PV}}=2.44(7){r}_0^{-1} \).
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).