Journal of High Energy Physics最新文献

筛选
英文 中文
Appearances are deceptive: can graviton have a mass? 外表是骗人的:引力子能有质量吗?
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-22 DOI: 10.1007/JHEP05(2025)191
Leihua Liu, Tomislav Prokopec
{"title":"Appearances are deceptive: can graviton have a mass?","authors":"Leihua Liu,&nbsp;Tomislav Prokopec","doi":"10.1007/JHEP05(2025)191","DOIUrl":"10.1007/JHEP05(2025)191","url":null,"abstract":"<p>We study the dynamics of linear gravitational perturbations on cosmological backgrounds of massive fermionic fields. We observe that, when gravitational and matter action are expanded to quadratic order in gravitational perturbations on cosmological backgrounds, the graviton appears to have an off-shell mass. We derive a consistent set of two equations for the evolution of linear classical and quantum gravitational perturbations on general cosmological backgrounds, and demonstrate that the graviton mass disappears at the level of equations of motion (on-shell). In this work we consider a Universe whose expansion is driven by the one-loop quantum backreaction of fermions, and dynamical gravitons that evolve on that same background. These equations govern the evolution of linear gravitational perturbations on general cosmological matter backgrounds. A concrete one-loop calculation is performed for the simple case of massive Dirac fermions when the temperature of the cosmological fluid changes adiabatically when compared with the expansion rate of the Universe.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)191.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amplitude analysis and branching fraction measurement of the Cabibbo-favored decay D+ → K−π+π+π0 cabibbo有利衰变D+→K−π+π+π +π0的振幅分析和分支分数测量
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-22 DOI: 10.1007/JHEP05(2025)195
The BESIII collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, O. Afedulidis, X. C. Ai, R. Aliberti, A. Amoroso, Y. Bai, O. Bakina, I. Balossino, Y. Ban, H.-R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, X. Y. Chai, J. F. Chang, G. R. Che, Y. Z. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, S. K. Choi, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, G. F. Fan, J. J. Fan, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Y. N. Gao, Yang Gao, S. Garbolino, I. Garzia, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, Q. P. Hu, S. L. Hu, T. Hu, Y. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, P. Huang, X. T. Huang, Y. P. Huang, Y. S. Huang, T. Hussain, F. Hölzken, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, X. Q. Jia, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. S. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, W. N. Lan, T. T. Lei, Z. H. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, K. Li, K. L. Li, L. J. Li, L. K. Li, Lei Li, M. H. Li, P. L. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, T. Li, T. Y. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Y. Li, X. Z. Li, Y. Li, Y. G. Li, Z. J. Li, Z. Y. Li, C. Liang, H. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, C. X. Lin, D. X. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. Liu, F. H. Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. C. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, L. R. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. Y. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, I. MacKay, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, Y. H. Meng, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, W. D. Niu, Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. Qi, H. R. Qi, M. Qi, S. Qian, W. B. Qian, C. F. Qiao, J. H. Qiao, J. J. Qin, L. Q. Qin, L. Y. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, K. J. Ren, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, M. Q. Ruan, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, J. L. Shi, J. Y. Shi, S. Y. Shi, X. Shi, J. J. Song, T. Z. Song, W. M. Song, Y. J. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, S. S Su, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, M. Tang, Y. A. Tang, L. Y. Tao, Q. T. Tao, M. Tat, J. X. Teng, V. Thoren, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, Y. Wan, S. J. Wang, B. Wang, Bo Wang, C. Wang, D. Y. Wang, H. J. Wang, J. J. Wang, J. P. Wang, K. Wang, L. L. Wang, L. W. Wang, M. Wang, N. Y. Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. H. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z. L. Wang, Z. Y. Wang, D. H. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, Lianjie Wu, X. Wu, X. H. Wu, Y. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, H. Xiao, S. Y. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. L. Xu, X. P. Xu, Y. Xu, Y. C. Xu, Z. S. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, W. P. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, J. H. Yang, R. J. Yang, T. Yang, Y. Yang, Y. F. Yang, Y. F. Yang, Y. X. Yang, Y. Z. Yang, Z. W. Yang, Z. P. Yao, M. Ye, M. H. Ye, J. H. Yin, Junhao Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, M. C. Yu, T. Yu, X. D. Yu, C. Z. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, Ying Yue, A. A. Zafar, F. R. Zeng, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. C. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, P. Zhang, Q. Zhang, Q. Y. Zhang, R. Y. Zhang, S. H. Zhang, Shulei Zhang, X. M. Zhang, X. Y Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Yan Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. X. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, Zh. Zh. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, L. Zhao, Lei Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, X. R. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Y. Zhou, L. P. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, Z. C. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, T. J. Zhu, W. D. Zhu, W. Z. Zhu, Y. C. Zhu, Z. A. Zhu, J. H. Zou, J. Zu
{"title":"Amplitude analysis and branching fraction measurement of the Cabibbo-favored decay D+ → K−π+π+π0","authors":"The BESIII collaboration,&nbsp;M. Ablikim,&nbsp;M. N. Achasov,&nbsp;P. Adlarson,&nbsp;O. Afedulidis,&nbsp;X. C. Ai,&nbsp;R. Aliberti,&nbsp;A. Amoroso,&nbsp;Y. Bai,&nbsp;O. Bakina,&nbsp;I. Balossino,&nbsp;Y. Ban,&nbsp;H.-R. Bao,&nbsp;V. Batozskaya,&nbsp;K. Begzsuren,&nbsp;N. Berger,&nbsp;M. Berlowski,&nbsp;M. Bertani,&nbsp;D. Bettoni,&nbsp;F. Bianchi,&nbsp;E. Bianco,&nbsp;A. Bortone,&nbsp;I. Boyko,&nbsp;R. A. Briere,&nbsp;A. Brueggemann,&nbsp;H. Cai,&nbsp;X. Cai,&nbsp;A. Calcaterra,&nbsp;G. F. Cao,&nbsp;N. Cao,&nbsp;S. A. Cetin,&nbsp;X. Y. Chai,&nbsp;J. F. Chang,&nbsp;G. R. Che,&nbsp;Y. Z. Che,&nbsp;G. Chelkov,&nbsp;C. Chen,&nbsp;C. H. Chen,&nbsp;Chao Chen,&nbsp;G. Chen,&nbsp;H. S. Chen,&nbsp;H. Y. Chen,&nbsp;M. L. Chen,&nbsp;S. J. Chen,&nbsp;S. L. Chen,&nbsp;S. M. Chen,&nbsp;T. Chen,&nbsp;X. R. Chen,&nbsp;X. T. Chen,&nbsp;Y. B. Chen,&nbsp;Y. Q. Chen,&nbsp;Z. J. Chen,&nbsp;S. K. Choi,&nbsp;G. Cibinetto,&nbsp;F. Cossio,&nbsp;J. J. Cui,&nbsp;H. L. Dai,&nbsp;J. P. Dai,&nbsp;A. Dbeyssi,&nbsp;R. E. de Boer,&nbsp;D. Dedovich,&nbsp;C. Q. Deng,&nbsp;Z. Y. Deng,&nbsp;A. Denig,&nbsp;I. Denysenko,&nbsp;M. Destefanis,&nbsp;F. De Mori,&nbsp;B. Ding,&nbsp;X. X. Ding,&nbsp;Y. Ding,&nbsp;Y. Ding,&nbsp;J. Dong,&nbsp;L. Y. Dong,&nbsp;M. Y. Dong,&nbsp;X. Dong,&nbsp;M. C. Du,&nbsp;S. X. Du,&nbsp;Y. Y. Duan,&nbsp;Z. H. Duan,&nbsp;P. Egorov,&nbsp;G. F. Fan,&nbsp;J. J. Fan,&nbsp;Y. H. Fan,&nbsp;J. Fang,&nbsp;J. Fang,&nbsp;S. S. Fang,&nbsp;W. X. Fang,&nbsp;Y. Fang,&nbsp;Y. Q. Fang,&nbsp;R. Farinelli,&nbsp;L. Fava,&nbsp;F. Feldbauer,&nbsp;G. Felici,&nbsp;C. Q. Feng,&nbsp;J. H. Feng,&nbsp;Y. T. Feng,&nbsp;M. Fritsch,&nbsp;C. D. Fu,&nbsp;J. L. Fu,&nbsp;Y. W. Fu,&nbsp;H. Gao,&nbsp;X. B. Gao,&nbsp;Y. N. Gao,&nbsp;Y. N. Gao,&nbsp;Yang Gao,&nbsp;S. Garbolino,&nbsp;I. Garzia,&nbsp;P. T. Ge,&nbsp;Z. W. Ge,&nbsp;C. Geng,&nbsp;E. M. Gersabeck,&nbsp;A. Gilman,&nbsp;K. Goetzen,&nbsp;L. Gong,&nbsp;W. X. Gong,&nbsp;W. Gradl,&nbsp;S. Gramigna,&nbsp;M. Greco,&nbsp;M. H. Gu,&nbsp;Y. T. Gu,&nbsp;C. Y. Guan,&nbsp;A. Q. Guo,&nbsp;L. B. Guo,&nbsp;M. J. Guo,&nbsp;R. P. Guo,&nbsp;Y. P. Guo,&nbsp;A. Guskov,&nbsp;J. Gutierrez,&nbsp;K. L. Han,&nbsp;T. T. Han,&nbsp;F. Hanisch,&nbsp;X. Q. Hao,&nbsp;F. A. Harris,&nbsp;K. K. He,&nbsp;K. L. He,&nbsp;F. H. Heinsius,&nbsp;C. H. Heinz,&nbsp;Y. K. Heng,&nbsp;C. Herold,&nbsp;T. Holtmann,&nbsp;P. C. Hong,&nbsp;G. Y. Hou,&nbsp;X. T. Hou,&nbsp;Y. R. Hou,&nbsp;Z. L. Hou,&nbsp;B. Y. Hu,&nbsp;H. M. Hu,&nbsp;J. F. Hu,&nbsp;Q. P. Hu,&nbsp;S. L. Hu,&nbsp;T. Hu,&nbsp;Y. Hu,&nbsp;G. S. Huang,&nbsp;K. X. Huang,&nbsp;L. Q. Huang,&nbsp;P. Huang,&nbsp;X. T. Huang,&nbsp;Y. P. Huang,&nbsp;Y. S. Huang,&nbsp;T. Hussain,&nbsp;F. Hölzken,&nbsp;N. Hüsken,&nbsp;N. in der Wiesche,&nbsp;J. Jackson,&nbsp;S. Janchiv,&nbsp;Q. Ji,&nbsp;Q. P. Ji,&nbsp;W. Ji,&nbsp;X. B. Ji,&nbsp;X. L. Ji,&nbsp;Y. Y. Ji,&nbsp;X. Q. Jia,&nbsp;Z. K. Jia,&nbsp;D. Jiang,&nbsp;H. B. Jiang,&nbsp;P. C. Jiang,&nbsp;S. S. Jiang,&nbsp;T. J. Jiang,&nbsp;X. S. Jiang,&nbsp;Y. Jiang,&nbsp;J. B. Jiao,&nbsp;J. K. Jiao,&nbsp;Z. Jiao,&nbsp;S. Jin,&nbsp;Y. Jin,&nbsp;M. Q. Jing,&nbsp;X. M. Jing,&nbsp;T. Johansson,&nbsp;S. Kabana,&nbsp;N. Kalantar-Nayestanaki,&nbsp;X. L. Kang,&nbsp;X. S. Kang,&nbsp;M. Kavatsyuk,&nbsp;B. C. Ke,&nbsp;V. Khachatryan,&nbsp;A. Khoukaz,&nbsp;R. Kiuchi,&nbsp;O. B. Kolcu,&nbsp;B. Kopf,&nbsp;M. Kuessner,&nbsp;X. Kui,&nbsp;N. Kumar,&nbsp;A. Kupsc,&nbsp;W. Kühn,&nbsp;W. N. Lan,&nbsp;T. T. Lei,&nbsp;Z. H. Lei,&nbsp;M. Lellmann,&nbsp;T. Lenz,&nbsp;C. Li,&nbsp;C. Li,&nbsp;C. H. Li,&nbsp;Cheng Li,&nbsp;D. M. Li,&nbsp;F. Li,&nbsp;G. Li,&nbsp;H. B. Li,&nbsp;H. J. Li,&nbsp;H. N. Li,&nbsp;Hui Li,&nbsp;J. R. Li,&nbsp;J. S. Li,&nbsp;K. Li,&nbsp;K. L. Li,&nbsp;L. J. Li,&nbsp;L. K. Li,&nbsp;Lei Li,&nbsp;M. H. Li,&nbsp;P. L. Li,&nbsp;P. R. Li,&nbsp;Q. M. Li,&nbsp;Q. X. Li,&nbsp;R. Li,&nbsp;T. Li,&nbsp;T. Y. Li,&nbsp;W. D. Li,&nbsp;W. G. Li,&nbsp;X. Li,&nbsp;X. H. Li,&nbsp;X. L. Li,&nbsp;X. Y. Li,&nbsp;X. Z. Li,&nbsp;Y. Li,&nbsp;Y. G. Li,&nbsp;Z. J. Li,&nbsp;Z. Y. Li,&nbsp;C. Liang,&nbsp;H. Liang,&nbsp;H. Liang,&nbsp;Y. F. Liang,&nbsp;Y. T. Liang,&nbsp;G. R. Liao,&nbsp;Y. P. Liao,&nbsp;J. Libby,&nbsp;A. Limphirat,&nbsp;C. C. Lin,&nbsp;C. X. Lin,&nbsp;D. X. Lin,&nbsp;T. Lin,&nbsp;B. J. Liu,&nbsp;B. X. Liu,&nbsp;C. Liu,&nbsp;C. X. Liu,&nbsp;F. Liu,&nbsp;F. H. Liu,&nbsp;Feng Liu,&nbsp;G. M. Liu,&nbsp;H. Liu,&nbsp;H. B. Liu,&nbsp;H. H. Liu,&nbsp;H. M. Liu,&nbsp;Huihui Liu,&nbsp;J. B. Liu,&nbsp;J. Y. Liu,&nbsp;K. Liu,&nbsp;K. Y. Liu,&nbsp;Ke Liu,&nbsp;L. Liu,&nbsp;L. C. Liu,&nbsp;Lu Liu,&nbsp;M. H. Liu,&nbsp;P. L. Liu,&nbsp;Q. Liu,&nbsp;S. B. Liu,&nbsp;T. Liu,&nbsp;W. K. Liu,&nbsp;W. M. Liu,&nbsp;X. Liu,&nbsp;X. Liu,&nbsp;Y. Liu,&nbsp;Y. Liu,&nbsp;Y. B. Liu,&nbsp;Z. A. Liu,&nbsp;Z. D. Liu,&nbsp;Z. Q. Liu,&nbsp;X. C. Lou,&nbsp;F. X. Lu,&nbsp;H. J. Lu,&nbsp;J. G. Lu,&nbsp;Y. Lu,&nbsp;Y. P. Lu,&nbsp;Z. H. Lu,&nbsp;C. L. Luo,&nbsp;J. R. Luo,&nbsp;M. X. Luo,&nbsp;T. Luo,&nbsp;X. L. Luo,&nbsp;X. R. Lyu,&nbsp;Y. F. Lyu,&nbsp;F. C. Ma,&nbsp;H. Ma,&nbsp;H. L. Ma,&nbsp;J. L. Ma,&nbsp;L. L. Ma,&nbsp;L. R. Ma,&nbsp;M. M. Ma,&nbsp;Q. M. Ma,&nbsp;R. Q. Ma,&nbsp;R. Y. Ma,&nbsp;T. Ma,&nbsp;X. T. Ma,&nbsp;X. Y. Ma,&nbsp;Y. M. Ma,&nbsp;F. E. Maas,&nbsp;I. MacKay,&nbsp;M. Maggiora,&nbsp;S. Malde,&nbsp;Y. J. Mao,&nbsp;Z. P. Mao,&nbsp;S. Marcello,&nbsp;Y. H. Meng,&nbsp;Z. X. Meng,&nbsp;J. G. Messchendorp,&nbsp;G. Mezzadri,&nbsp;H. Miao,&nbsp;T. J. Min,&nbsp;R. E. Mitchell,&nbsp;X. H. Mo,&nbsp;B. Moses,&nbsp;N. Yu. Muchnoi,&nbsp;J. Muskalla,&nbsp;Y. Nefedov,&nbsp;F. Nerling,&nbsp;L. S. Nie,&nbsp;I. B. Nikolaev,&nbsp;Z. Ning,&nbsp;S. Nisar,&nbsp;Q. L. Niu,&nbsp;W. D. Niu,&nbsp;Y. Niu,&nbsp;S. L. Olsen,&nbsp;Q. Ouyang,&nbsp;S. Pacetti,&nbsp;X. Pan,&nbsp;Y. Pan,&nbsp;A. Pathak,&nbsp;Y. P. Pei,&nbsp;M. Pelizaeus,&nbsp;H. P. Peng,&nbsp;Y. Y. Peng,&nbsp;K. Peters,&nbsp;J. L. Ping,&nbsp;R. G. Ping,&nbsp;S. Plura,&nbsp;V. Prasad,&nbsp;F. Z. Qi,&nbsp;H. Qi,&nbsp;H. R. Qi,&nbsp;M. Qi,&nbsp;S. Qian,&nbsp;W. B. Qian,&nbsp;C. F. Qiao,&nbsp;J. H. Qiao,&nbsp;J. J. Qin,&nbsp;L. Q. Qin,&nbsp;L. Y. Qin,&nbsp;X. P. Qin,&nbsp;X. S. Qin,&nbsp;Z. H. Qin,&nbsp;J. F. Qiu,&nbsp;Z. H. Qu,&nbsp;C. F. Redmer,&nbsp;K. J. Ren,&nbsp;A. Rivetti,&nbsp;M. Rolo,&nbsp;G. Rong,&nbsp;Ch. Rosner,&nbsp;M. Q. Ruan,&nbsp;S. N. Ruan,&nbsp;N. Salone,&nbsp;A. Sarantsev,&nbsp;Y. Schelhaas,&nbsp;K. Schoenning,&nbsp;M. Scodeggio,&nbsp;K. Y. Shan,&nbsp;W. Shan,&nbsp;X. Y. Shan,&nbsp;Z. J. Shang,&nbsp;J. F. Shangguan,&nbsp;L. G. Shao,&nbsp;M. Shao,&nbsp;C. P. Shen,&nbsp;H. F. Shen,&nbsp;W. H. Shen,&nbsp;X. Y. Shen,&nbsp;B. A. Shi,&nbsp;H. Shi,&nbsp;J. L. Shi,&nbsp;J. Y. Shi,&nbsp;S. Y. Shi,&nbsp;X. Shi,&nbsp;J. J. Song,&nbsp;T. Z. Song,&nbsp;W. M. Song,&nbsp;Y. J. Song,&nbsp;Y. X. Song,&nbsp;S. Sosio,&nbsp;S. Spataro,&nbsp;F. Stieler,&nbsp;S. S Su,&nbsp;Y. J. Su,&nbsp;G. B. Sun,&nbsp;G. X. Sun,&nbsp;H. Sun,&nbsp;H. K. Sun,&nbsp;J. F. Sun,&nbsp;K. Sun,&nbsp;L. Sun,&nbsp;S. S. Sun,&nbsp;T. Sun,&nbsp;Y. J. Sun,&nbsp;Y. Z. Sun,&nbsp;Z. Q. Sun,&nbsp;Z. T. Sun,&nbsp;C. J. Tang,&nbsp;G. Y. Tang,&nbsp;J. Tang,&nbsp;M. Tang,&nbsp;Y. A. Tang,&nbsp;L. Y. Tao,&nbsp;Q. T. Tao,&nbsp;M. Tat,&nbsp;J. X. Teng,&nbsp;V. Thoren,&nbsp;W. H. Tian,&nbsp;Y. Tian,&nbsp;Z. F. Tian,&nbsp;I. Uman,&nbsp;Y. Wan,&nbsp;S. J. Wang,&nbsp;B. Wang,&nbsp;Bo Wang,&nbsp;C. Wang,&nbsp;D. Y. Wang,&nbsp;H. J. Wang,&nbsp;J. J. Wang,&nbsp;J. P. Wang,&nbsp;K. Wang,&nbsp;L. L. Wang,&nbsp;L. W. Wang,&nbsp;M. Wang,&nbsp;N. Y. Wang,&nbsp;S. Wang,&nbsp;S. Wang,&nbsp;T. Wang,&nbsp;T. J. Wang,&nbsp;W. Wang,&nbsp;W. Wang,&nbsp;W. P. Wang,&nbsp;X. Wang,&nbsp;X. F. Wang,&nbsp;X. J. Wang,&nbsp;X. L. Wang,&nbsp;X. N. Wang,&nbsp;Y. Wang,&nbsp;Y. D. Wang,&nbsp;Y. F. Wang,&nbsp;Y. H. Wang,&nbsp;Y. L. Wang,&nbsp;Y. N. Wang,&nbsp;Y. Q. Wang,&nbsp;Yaqian Wang,&nbsp;Yi Wang,&nbsp;Z. Wang,&nbsp;Z. L. Wang,&nbsp;Z. Y. Wang,&nbsp;D. H. Wei,&nbsp;F. Weidner,&nbsp;S. P. Wen,&nbsp;Y. R. Wen,&nbsp;U. Wiedner,&nbsp;G. Wilkinson,&nbsp;M. Wolke,&nbsp;L. Wollenberg,&nbsp;C. Wu,&nbsp;J. F. Wu,&nbsp;L. H. Wu,&nbsp;L. J. Wu,&nbsp;Lianjie Wu,&nbsp;X. Wu,&nbsp;X. H. Wu,&nbsp;Y. H. Wu,&nbsp;Y. J. Wu,&nbsp;Z. Wu,&nbsp;L. Xia,&nbsp;X. M. Xian,&nbsp;B. H. Xiang,&nbsp;T. Xiang,&nbsp;D. Xiao,&nbsp;G. Y. Xiao,&nbsp;H. Xiao,&nbsp;S. Y. Xiao,&nbsp;Y. L. Xiao,&nbsp;Z. J. Xiao,&nbsp;C. Xie,&nbsp;X. H. Xie,&nbsp;Y. Xie,&nbsp;Y. G. Xie,&nbsp;Y. H. Xie,&nbsp;Z. P. Xie,&nbsp;T. Y. Xing,&nbsp;C. F. Xu,&nbsp;C. J. Xu,&nbsp;G. F. Xu,&nbsp;M. Xu,&nbsp;Q. J. Xu,&nbsp;Q. N. Xu,&nbsp;W. L. Xu,&nbsp;X. P. Xu,&nbsp;Y. Xu,&nbsp;Y. C. Xu,&nbsp;Z. S. Xu,&nbsp;F. Yan,&nbsp;L. Yan,&nbsp;W. B. Yan,&nbsp;W. C. Yan,&nbsp;W. P. Yan,&nbsp;X. Q. Yan,&nbsp;H. J. Yang,&nbsp;H. L. Yang,&nbsp;H. X. Yang,&nbsp;J. H. Yang,&nbsp;R. J. Yang,&nbsp;T. Yang,&nbsp;Y. Yang,&nbsp;Y. F. Yang,&nbsp;Y. F. Yang,&nbsp;Y. X. Yang,&nbsp;Y. Z. Yang,&nbsp;Z. W. Yang,&nbsp;Z. P. Yao,&nbsp;M. Ye,&nbsp;M. H. Ye,&nbsp;J. H. Yin,&nbsp;Junhao Yin,&nbsp;Z. Y. You,&nbsp;B. X. Yu,&nbsp;C. X. Yu,&nbsp;G. Yu,&nbsp;J. S. Yu,&nbsp;M. C. Yu,&nbsp;T. Yu,&nbsp;X. D. Yu,&nbsp;C. Z. Yuan,&nbsp;J. Yuan,&nbsp;J. Yuan,&nbsp;L. Yuan,&nbsp;S. C. Yuan,&nbsp;Y. Yuan,&nbsp;Z. Y. Yuan,&nbsp;C. X. Yue,&nbsp;Ying Yue,&nbsp;A. A. Zafar,&nbsp;F. R. Zeng,&nbsp;S. H. Zeng,&nbsp;X. Zeng,&nbsp;Y. Zeng,&nbsp;Y. J. Zeng,&nbsp;Y. J. Zeng,&nbsp;X. Y. Zhai,&nbsp;Y. C. Zhai,&nbsp;Y. H. Zhan,&nbsp;A. Q. Zhang,&nbsp;B. L. Zhang,&nbsp;B. X. Zhang,&nbsp;D. H. Zhang,&nbsp;G. Y. Zhang,&nbsp;H. Zhang,&nbsp;H. Zhang,&nbsp;H. C. Zhang,&nbsp;H. H. Zhang,&nbsp;H. Q. Zhang,&nbsp;H. R. Zhang,&nbsp;H. Y. Zhang,&nbsp;J. Zhang,&nbsp;J. Zhang,&nbsp;J. J. Zhang,&nbsp;J. L. Zhang,&nbsp;J. Q. Zhang,&nbsp;J. S. Zhang,&nbsp;J. W. Zhang,&nbsp;J. X. Zhang,&nbsp;J. Y. Zhang,&nbsp;J. Z. Zhang,&nbsp;Jianyu Zhang,&nbsp;L. M. Zhang,&nbsp;Lei Zhang,&nbsp;P. Zhang,&nbsp;Q. Zhang,&nbsp;Q. Y. Zhang,&nbsp;R. Y. Zhang,&nbsp;S. H. Zhang,&nbsp;Shulei Zhang,&nbsp;X. M. Zhang,&nbsp;X. Y Zhang,&nbsp;X. Y. Zhang,&nbsp;Y. Zhang,&nbsp;Y. Zhang,&nbsp;Y. T. Zhang,&nbsp;Y. H. Zhang,&nbsp;Y. M. Zhang,&nbsp;Yan Zhang,&nbsp;Z. D. Zhang,&nbsp;Z. H. Zhang,&nbsp;Z. L. Zhang,&nbsp;Z. X. Zhang,&nbsp;Z. Y. Zhang,&nbsp;Z. Y. Zhang,&nbsp;Z. Z. Zhang,&nbsp;Zh. Zh. Zhang,&nbsp;G. Zhao,&nbsp;J. Y. Zhao,&nbsp;J. Z. Zhao,&nbsp;L. Zhao,&nbsp;Lei Zhao,&nbsp;M. G. Zhao,&nbsp;N. Zhao,&nbsp;R. P. Zhao,&nbsp;S. J. Zhao,&nbsp;Y. B. Zhao,&nbsp;Y. X. Zhao,&nbsp;Z. G. Zhao,&nbsp;A. Zhemchugov,&nbsp;B. Zheng,&nbsp;B. M. Zheng,&nbsp;J. P. Zheng,&nbsp;W. J. Zheng,&nbsp;X. R. Zheng,&nbsp;Y. H. Zheng,&nbsp;B. Zhong,&nbsp;X. Zhong,&nbsp;H. Zhou,&nbsp;J. Y. Zhou,&nbsp;L. P. Zhou,&nbsp;S. Zhou,&nbsp;X. Zhou,&nbsp;X. K. Zhou,&nbsp;X. R. Zhou,&nbsp;X. Y. Zhou,&nbsp;Y. Z. Zhou,&nbsp;Z. C. Zhou,&nbsp;A. N. Zhu,&nbsp;J. Zhu,&nbsp;K. Zhu,&nbsp;K. J. Zhu,&nbsp;K. S. Zhu,&nbsp;L. Zhu,&nbsp;L. X. Zhu,&nbsp;S. H. Zhu,&nbsp;T. J. Zhu,&nbsp;W. D. Zhu,&nbsp;W. Z. Zhu,&nbsp;Y. C. Zhu,&nbsp;Z. A. Zhu,&nbsp;J. H. Zou,&nbsp;J. Zu","doi":"10.1007/JHEP05(2025)195","DOIUrl":"10.1007/JHEP05(2025)195","url":null,"abstract":"<p>An amplitude analysis of the Cabibbo-favored decay <i>D</i><sup>+</sup> → <i>K</i><sup><i>−</i></sup><i>π</i><sup>+</sup><i>π</i><sup>+</sup><i>π</i><sup>0</sup> is performed, using 7.93 fb<sup><i>−</i>1</sup> of <i>e</i><sup>+</sup><i>e</i><sup><i>−</i></sup> collision data collected with the BESIII detector at the center-of-mass energy of 3.773 GeV. The branching fractions of the intermediate processes are measured, with the dominant contribution <span>( {D}^{+}to {overline{K}}^{ast }{(892)}^0rho {(770)}^{+} )</span> observed to have a branching fraction of (4.35 <i>±</i> 0.07<sub>stat<i>.</i></sub> <i>±</i> 0.17<sub>syst<i>.</i></sub>)%. With the detection efficiency derived from the amplitude analysis, the absolute branching fraction of <i>D</i><sup>+</sup> <i>→ K</i><sup><i>−</i></sup><i>π</i><sup>+</sup><i>π</i><sup>+</sup><i>π</i><sup>0</sup> is measured to be (6.35 <i>±</i> 0.04<sub>stat<i>.</i></sub> <i>±</i> 0.07<sub>syst<i>.</i></sub>)%.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)195.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144140172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On observers in holographic maps 全息地图上的观察者
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-22 DOI: 10.1007/JHEP05(2025)201
Chris Akers, Gracemarie Bueller, Oliver DeWolfe, Kenneth Higginbotham, Johannes Reinking, Rudolph Rodriguez
{"title":"On observers in holographic maps","authors":"Chris Akers,&nbsp;Gracemarie Bueller,&nbsp;Oliver DeWolfe,&nbsp;Kenneth Higginbotham,&nbsp;Johannes Reinking,&nbsp;Rudolph Rodriguez","doi":"10.1007/JHEP05(2025)201","DOIUrl":"10.1007/JHEP05(2025)201","url":null,"abstract":"<p>A straightforward gravitational path integral calculation implies that closed universes are trivial, described by a one dimensional Hilbert space. Two recent papers by Harlow-Usatyuk-Zhao and Abdalla-Antonini-Iliesiu-Levine have sought to ameliorate this issue by defining special rules to incorporate observers into the path integral. However, the proposed rules are different, leading to differing results for the Hilbert space dimension. Moreover, the former work offers a holographic map realized using a non-isometric code construction to complement their path integral result and clarify its physics. In this work, we propose a non-isometric code that implements the second construction, allowing thorough comparison. Our prescription may be thought of as simply removing the portion of the map that acts on the observer, while preserving the rest, creating an effective holographic boundary at the observer-environment interface. This proposal can be directly applied to general holographic maps for both open and closed universes of any dimension.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)201.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation and proof of the gravitational entropy bound 引力熵界的公式和证明
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-22 DOI: 10.1007/JHEP05(2025)193
Artem Averin
{"title":"Formulation and proof of the gravitational entropy bound","authors":"Artem Averin","doi":"10.1007/JHEP05(2025)193","DOIUrl":"10.1007/JHEP05(2025)193","url":null,"abstract":"<p>We provide a formulation and proof of the gravitational entropy bound. We use a recently given framework which expresses the measurable quantities of a quantum theory as a weighted sum over paths in the theory’s phase space. If this framework is applied to a field theory on a spacetime foliated by a hypersurface Σ, the choice of a codimension-2 surface <i>B</i> without boundary contained in Σ specifies a submanifold in the phase space. We show here that this submanifold is naturally restricted to obey an entropy bound if the field theory is diffeomorphism-invariant. We prove this restriction to arise by considering the quantum-mechanical sum of paths in phase space and exploiting the interplay of the commutativity of the sum with diffeomorphism-invariance. The formulation of the entropy bound, which we state and derive in detail, involves a functional <i>K</i> on the submanifold associated to <i>B</i>. We give an explicit construction of <i>K</i> in terms of the Lagrangian. The gravitational entropy bound then states: for any real <span>( frac{lambda }{hslash } )</span>, consider the set of states where <i>K</i> takes a value not bigger than <i>λ</i> and let <i>V</i> denote the phase space volume of this set. One has then ln(<i>V</i>) ≤ <span>( frac{lambda }{hslash } )</span>. Especially, we show for the Einstein-Hilbert Lagrangian in any dimension with cosmological constant and arbitrary minimally coupled matter, one has <i>K</i> = <span>( frac{A}{4G} )</span>. Hereby, <i>A</i> denotes the area of <i>B</i> in a particular state.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)193.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Further study on excited ( {Xi}_{QQ^{prime }} ) via photoproduction at CEPC and FCC-ee 在CEPC和FCC-ee上进一步研究受激( {Xi}_{QQ^{prime }} )
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-22 DOI: 10.1007/JHEP05(2025)197
Hong-Hao Ma, Juan-Juan Niu, Lei Guo
{"title":"Further study on excited ( {Xi}_{QQ^{prime }} ) via photoproduction at CEPC and FCC-ee","authors":"Hong-Hao Ma,&nbsp;Juan-Juan Niu,&nbsp;Lei Guo","doi":"10.1007/JHEP05(2025)197","DOIUrl":"10.1007/JHEP05(2025)197","url":null,"abstract":"<p>Within the framework of NRQCD, the photoproduction of doubly heavy baryons Ξ<sub><i>cc</i></sub>, Ξ<sub><i>bc</i></sub>, Ξ<sub><i>bb</i></sub> and their <i>P</i>-wave excited states has been systematically investigated. The production mechanism is that a color anti-triplet or sextuplet diquark ⟨<i>QQ</i><sup>′</sup>⟩ is first produced, and then evolved into a corresponding doubly heavy baryon <span>( {Xi}_{QQ^{prime }} )</span> via the subprocess <i>γ</i> + <i>γ</i> → ⟨<i>QQ</i><sup>′</sup>⟩[<i>n</i>] + <span>( {overline{Q}}^{prime } )</span> + <span>( overline{Q} )</span> → <span>( {Xi}_{QQ^{prime }} )</span> + <span>( {overline{Q}}^{prime } )</span> + <span>( overline{Q} )</span>. Here, <i>Q</i><sup>(′)</sup> denotes the heavy quark <i>b</i> or <i>c</i>, [<i>n</i>] is the color and spin quantum number of intermediate diquark, which can be <span>( {left[^3{S}_1right]}_{overline{textbf{3}}/textbf{6}} )</span> and <span>( {left[^1{S}_0right]}_{overline{textbf{3}}/textbf{6}} )</span> for <i>S</i>-wave states, or <span>( {left[^1{P}_1right]}_{overline{textbf{3}}/textbf{6}} )</span> and <span>( {left[^3{P}_Jright]}_{overline{textbf{3}}/textbf{6}} )</span> with <i>J</i> = 0, 1, 2 for <i>P</i>-wave states. Predictions for the cross sections, differential distributions, and theoretical uncertainty have been analyzed. The results indicate that, at <span>( sqrt{s} )</span> = 91 GeV, the contribution of photoproduction for <i>P</i>-wave Ξ<sub><i>cc</i></sub>, Ξ<sub><i>bc</i></sub>, and Ξ<sub><i>bb</i></sub> is approximately 2<i>.</i>19%, 4<i>.</i>23%, 1<i>.</i>26% of the contribution for <i>S</i>-wave, respectively. As the collision energy increases, the contribution of <i>P</i>-wave also increases. Assuming that the highly excited state can decay into ground state with 100% efficiency, the total produced events at CEPC and FCC-ee can be as high as <span>( mathcal{O}left({10}^8right) )</span>, <span>( mathcal{O}left({10}^7right) )</span><i>,</i> and <span>( mathcal{O}left({10}^5right) )</span> corresponding to Ξ<sub><i>cc</i></sub>, Ξ<sub><i>bc</i></sub>, and Ξ<sub><i>bb</i></sub>, respectively, which is very promising to be detected in future experiments.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)197.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144125734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pion pair production in e+e− annihilation at next-to-leading order matched to Parton Shower 次序e+e−湮灭的介子对产生与Parton Shower相匹配
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-22 DOI: 10.1007/JHEP05(2025)196
Ettore Budassi, Carlo M. Carloni Calame, Marco Ghilardi, Andrea Gurgone, Guido Montagna, Mauro Moretti, Oreste Nicrosini, Fulvio Piccinini, Francesco P. Ucci
{"title":"Pion pair production in e+e− annihilation at next-to-leading order matched to Parton Shower","authors":"Ettore Budassi,&nbsp;Carlo M. Carloni Calame,&nbsp;Marco Ghilardi,&nbsp;Andrea Gurgone,&nbsp;Guido Montagna,&nbsp;Mauro Moretti,&nbsp;Oreste Nicrosini,&nbsp;Fulvio Piccinini,&nbsp;Francesco P. Ucci","doi":"10.1007/JHEP05(2025)196","DOIUrl":"10.1007/JHEP05(2025)196","url":null,"abstract":"<p>The pion pair production in <i>e</i><sup>+</sup><i>e</i><sup>−</sup> annihilation at flavour factories plays a crucial role in the determination of the hadronic contribution to the muon anomalous magnetic moment. The recent CMD-3 measurement of the pion form factor via energy scan displays a significant difference with the previous experimental determinations. In order to contribute to an improved theoretical description and simulation of energy scan experiments, we present a calculation of the <i>e</i><sup>+</sup><i>e</i><sup>−</sup> → <i>π</i><sup>+</sup><i>π</i><sup>−</sup>(<i>γ</i>) hadronic channel at next-to-leading order matched to a Parton Shower algorithm in QED and sQED. According to the recent advances in the literature, particular attention is paid to the treatment of the pion composite structure in loop diagrams beyond the commonly used factorised sQED approach, as well as to the modelling of multiple photon radiation through the Parton Shower algorithm. In particular, we carry out a detailed discussion on the inclusion of the pion form factor in the virtual sQED corrections according to two independent methods, inspired by the generalised vector meson dominance model and the dispersive approach, respectively. We find the two methods to be in remarkable agreement. We show phenomenological results for inclusive and differential observables which are relevant for precision energy scan measurements, focusing on the impact of the radiative corrections and the effect of the various approaches for the treatment of the pion form factor. Our calculation is implemented in an updated version of the Monte Carlo event generator B<span>aba</span>Y<span>aga</span>@NLO, that can be used for fully exclusive simulations in data analysis.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)196.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144135295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual non-Lorentzian backgrounds for matrix theories 矩阵理论的对偶非洛伦兹背景
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-22 DOI: 10.1007/JHEP05(2025)200
Chris D. A. Blair, Johannes Lahnsteiner, Niels A. Obers, Ziqi Yan
{"title":"Dual non-Lorentzian backgrounds for matrix theories","authors":"Chris D. A. Blair,&nbsp;Johannes Lahnsteiner,&nbsp;Niels A. Obers,&nbsp;Ziqi Yan","doi":"10.1007/JHEP05(2025)200","DOIUrl":"10.1007/JHEP05(2025)200","url":null,"abstract":"<p>We study properties of non-Lorentzian geometries arising from BPS decoupling limits of string theory that are central to matrix theory and the AdS/CFT correspondence. We focus on duality transformations between ten-dimensional non-Lorentzian geometries coupled to matrix theory on D-branes. We demonstrate that T- and S-duality transformations exhibit novel asymmetric properties: depending not only on the choice of transformation but also on the value of the background fields, the codimension of the foliation structure of the dual non-Lorentzian background may be different or the same. This <i>duality asymmetry</i> underlies features observed in the study of non-commutativity and Morita equivalence in matrix and gauge theory. Finally, we show how the holographic correspondence involving non-commutative Yang-Mills fits into our framework, from which we further obtain novel holographic examples with non-Lorentzian bulk geometries.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)200.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144125735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gravitational solitons and non-relativistic string theory 引力孤子和非相对论性弦理论
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-22 DOI: 10.1007/JHEP05(2025)199
Troels Harmark, Johannes Lahnsteiner, Niels A. Obers
{"title":"Gravitational solitons and non-relativistic string theory","authors":"Troels Harmark,&nbsp;Johannes Lahnsteiner,&nbsp;Niels A. Obers","doi":"10.1007/JHEP05(2025)199","DOIUrl":"10.1007/JHEP05(2025)199","url":null,"abstract":"<p>We explore the non-relativistic string theory (NRST) limit of type II string theory and its action on gravitational solitons. As a start, we exhibit in detail that the NRST limit is T-dual to a discrete lightcone limit and can be viewed as a near-BPS limit. This also clarifies the nature of multi-string states of NRST and its connection to matrix string theory. We consider the NRST limit of the fundamental string soliton, confirming the recent finding that it corresponds to a relativistic near-horizon background, which we argue is the manifestation of a strong coupling phase of the NRST worldsheet theory. Furthermore, we consider the NRST limit of a class of D-branes as well as the NS5-brane. This reveals that they become gravitational solitons in NRST, as they are sourced torsional string Newton-Cartan (TSNC) geometries. Finally, for the NRST D-brane solitons we show that a further decoupling limit leads to new holographic correspondences between multicritical matrix theories and NRST in curved TSNC backgrounds.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)199.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144125736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-reversal invariant TQFTs from self-mirror symmetric SCFTs 自镜像对称scft的时间反转不变tqft
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-22 DOI: 10.1007/JHEP05(2025)198
Hongliang Jiang
{"title":"Time-reversal invariant TQFTs from self-mirror symmetric SCFTs","authors":"Hongliang Jiang","doi":"10.1007/JHEP05(2025)198","DOIUrl":"10.1007/JHEP05(2025)198","url":null,"abstract":"<p>We establish a connection between three-dimensional self-mirror symmetric <span>( mathcal{N} )</span> = 4 superconformal field theories (SCFTs) and time-reversal invariant topological quantum field theories (TQFTs) arising from universal mass deformations. Focusing on the Abelian case, the ultraviolet (UV) SCFT is characterized by the charge matrix <i>Q</i>, while the infrared (IR) TQFT corresponds to an Abelian Chern-Simons theory with level matrix <i>K</i> = <i>QQ</i><sup><i>T</i></sup>. We derive constraints on the charge matrix for self-mirror symmetric SCFTs and demonstrate that the Coulomb and Higgs branch Hilbert series of these theories coincide. Additionally, we derive a general formula for the superconformal indices of Abelian <span>( mathcal{N} )</span> = 4 SCFTs with arbitrary charge matrices. For SCFT with the constrained charge matrix, the superconformal index is argued to exhibit invariance under the inversion of fugacity associated with R-symmetry, providing further evidence of self-mirror symmetry. We explore various properties of time-reversal invariant Abelian Chern-Simons theories in detail and establish their connections to self-mirror symmetry in SCFTs from multiple perspectives. In particular, we introduce a quantity, dubbed Gauss generating function, which is real and thus invariant under complex conjugation for time-reversal symmetric TQFTs, in parallel with the superconformal index, which is invariant under the inversion of R-symmetry fugacity for self-mirror symmetric SCFTs.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)198.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass hierarchy of ℤ2 monopoles 2单极子的质量层次
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-22 DOI: 10.1007/JHEP05(2025)192
Eduardo E. Quadros, Paulo J. Liebgott
{"title":"Mass hierarchy of ℤ2 monopoles","authors":"Eduardo E. Quadros,&nbsp;Paulo J. Liebgott","doi":"10.1007/JHEP05(2025)192","DOIUrl":"10.1007/JHEP05(2025)192","url":null,"abstract":"<p>In this work we establish every spherically symmetric non-Abelian <i>ℤ</i><sub>2</sub> monopole generated by <i>su</i>(2) embeddings in the SU(4) Yang-Mills-Higgs model minimally broken to SO(4) by a symmetric second-rank tensor Higgs field. We find new monopole solutions associated with index 4 and index 10 embeddings. These solutions belong to <i>su</i>(2) multiplets that are higher dimensional than triplets. Properties of these monopoles such as their mass and radius are calculated in the vanishing potential limit. A parallel between this result and the Standard Model hierarchy of fermion masses is considered.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)192.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信