2012 38th IEEE Photovoltaic Specialists Conference最新文献

筛选
英文 中文
High band gap solar cells for underwater Photovoltaic applications 用于水下光伏应用的高带隙太阳能电池
2012 38th IEEE Photovoltaic Specialists Conference Pub Date : 2012-06-03 DOI: 10.1109/PVSC.2012.6318004
P. Jenkins, S. Messenger, K. Trautz, S. Maximenko, D. Goldstein, D. Scheiman, R. Walters
{"title":"High band gap solar cells for underwater Photovoltaic applications","authors":"P. Jenkins, S. Messenger, K. Trautz, S. Maximenko, D. Goldstein, D. Scheiman, R. Walters","doi":"10.1109/PVSC.2012.6318004","DOIUrl":"https://doi.org/10.1109/PVSC.2012.6318004","url":null,"abstract":"The use of autonomous systems to provide situational awareness and long-term environment monitoring is increasing. Photovoltaics (PV) has been favored as a long-endurance power source for many of these applications. To date the use of PV has been limited to space and terrestrial (dry land) installations. The need for an extended power source also exists for underwater (UW) systems, which currently rely on surface PV arrays or batteries. In this paper we demonstrate that high band gap InGaP solar cells can provide useful power underwater.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"30 1","pages":"002061-002064"},"PeriodicalIF":0.0,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74018644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Comparison of pyranometers vs. PV reference cells for evaluation of PV array performance 热辐射计与PV参考电池的比较,以评估PV阵列的性能
2012 38th IEEE Photovoltaic Specialists Conference Pub Date : 2012-06-03 DOI: 10.1109/PVSC.2012.6318193
L. Dunn, M. Gostein, K. Emery
{"title":"Comparison of pyranometers vs. PV reference cells for evaluation of PV array performance","authors":"L. Dunn, M. Gostein, K. Emery","doi":"10.1109/PVSC.2012.6318193","DOIUrl":"https://doi.org/10.1109/PVSC.2012.6318193","url":null,"abstract":"As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of ±5% for thermopile pyranometers and ±2.4% for PV reference devices.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"247 1","pages":"002899-002904"},"PeriodicalIF":0.0,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75799797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 62
Modelling isotextured silicon solar cells and modules 模拟等纹理硅太阳能电池和模块
2012 38th IEEE Photovoltaic Specialists Conference Pub Date : 2012-06-03 DOI: 10.1109/PVSC.2012.6317599
S. Baker-Finch, K. McIntosh, D. Inns, M. Terry
{"title":"Modelling isotextured silicon solar cells and modules","authors":"S. Baker-Finch, K. McIntosh, D. Inns, M. Terry","doi":"10.1109/PVSC.2012.6317599","DOIUrl":"https://doi.org/10.1109/PVSC.2012.6317599","url":null,"abstract":"We describe a one dimensional model for isotextured silicon solar cells. Combined optical and recombination analyses provide the tools required to predict the performance of isotextured cells; the utility of these tools is demonstrated by comparison with industrially fabricated screen-printed cells with full area back surface field. In this particular demonstration, inaccurate predetermination of front surface recombination reduces the predictive capability of the model. We measure the angular distribution of light from isotextured surfaces, showing that, when encapsulated with typical pottants beneath glass, current generation in isotextured cells approaches 99% of that achieved in random pyramid textured equivalents. This represents a reduction in the performance difference between the two textures when operating in air (not encapsulated); in this case, current generation in an isotextured device is 96% of that calculated beneath random pyramids. We calculate the short circuit current of photovoltaic modules comprising cast-mono silicon solar cells; when encapsulated beneath glass and EVA, isotexturing, rather than alkaline etching, maximises photogeneration in cells with less than 84% monocrystalline (<;100>;) surface area.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"13 1","pages":"000192-000198"},"PeriodicalIF":0.0,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74429921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Heterogeneous integration of InGaN and Silicon solar cells for enhanced energy harvesting 用于增强能量收集的InGaN和硅太阳能电池的异质集成
2012 38th IEEE Photovoltaic Specialists Conference Pub Date : 2012-06-03 DOI: 10.1109/PVSC.2012.6318231
N. Das, M. Reed, A. Sampath, H. Shen, M. Wraback, R. Farrell, M. Iza, S. C. Cruz, J. R. Lang, N. Young, Y. Terao, C. Neufeld, S. Keller, S. Nakamura, S. Denbaars, U. Mishra, J. Speck
{"title":"Heterogeneous integration of InGaN and Silicon solar cells for enhanced energy harvesting","authors":"N. Das, M. Reed, A. Sampath, H. Shen, M. Wraback, R. Farrell, M. Iza, S. C. Cruz, J. R. Lang, N. Young, Y. Terao, C. Neufeld, S. Keller, S. Nakamura, S. Denbaars, U. Mishra, J. Speck","doi":"10.1109/PVSC.2012.6318231","DOIUrl":"https://doi.org/10.1109/PVSC.2012.6318231","url":null,"abstract":"We report here enhanced solar energy harvesting using a hybrid solar cell with silicon solar cells (visible-infrared light) on bottom and an InGaN solar cell (UV light) on top. The InGaN solar cell with 30 QW periods has peak external quantum efficiency (EQE) of 40 % at 380 nm, an open circuit voltage (Voc) of 2.0 V, a short circuit current (Isc) of 0.8 mA/cm2, and fill factor of 55%. We have demonstrated that the application of an InGaN “active window” to a silicon solar cell counterbalances the encapsulation power loss typically suffered during production of a solar panel.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"44 1","pages":"003076-003079"},"PeriodicalIF":0.0,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74725172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Single-crystalline-like germanium thin films on glass substrates 玻璃基板上的单晶状锗薄膜
2012 38th IEEE Photovoltaic Specialists Conference Pub Date : 2012-06-03 DOI: 10.1109/PVSC.2012.6318125
V. Selvamanickam, C. Jian, X. Xiong, G. Majkic, E. Galtsyan
{"title":"Single-crystalline-like germanium thin films on glass substrates","authors":"V. Selvamanickam, C. Jian, X. Xiong, G. Majkic, E. Galtsyan","doi":"10.1109/PVSC.2012.6318125","DOIUrl":"https://doi.org/10.1109/PVSC.2012.6318125","url":null,"abstract":"Single-crystalline-like germanium films have been demonstrated on inexpensive glass substrates (quartz). Ion Beam Assisted Deposition (IBAD) was employed to achieve biaxial crystallographic texture in MgO deposited on quartz substrates. Using intervening epitaxial oxide buffer layers, single-crystalline-like germanium films have been grown by magnetron sputtering. In-spite of significant lattice mismatch and structural mismatch, epitaxial growth was achieved in all layers. All thin films in this work were deposited by reel-to-reel processing. In-plane texture better than 5° has been measured in the germanium film. A Hall mobility value of 107 cm2/Vs was attained in 400 nm thick germanium films on glass substrates.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"29 1","pages":"002592-002595"},"PeriodicalIF":0.0,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74913002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Solar input data for photovoltaic performance modeling 用于光伏性能建模的太阳能输入数据
2012 38th IEEE Photovoltaic Specialists Conference Pub Date : 2012-06-03 DOI: 10.1109/PVSC.2012.6318227
M. Schnitzer, P. Johnson, C. Thuman, J. Freeman
{"title":"Solar input data for photovoltaic performance modeling","authors":"M. Schnitzer, P. Johnson, C. Thuman, J. Freeman","doi":"10.1109/PVSC.2012.6318227","DOIUrl":"https://doi.org/10.1109/PVSC.2012.6318227","url":null,"abstract":"One of the most critical inputs to a photovoltaic (PV) energy model is the solar data set, which establishes the site's irradiance and weather variability. For long-term energy estimates, the solar data set is expected to represent the long-term climatological conditions on-site. While modeled solar data sets are available, the quality of these data vary by data source as well as regionally. The result of using a poor quality solar input data set is higher uncertainty in the energy production estimated from the model; conversely, a more accurate solar input data set can improve the confidence in the energy production estimate. As the solar industry begins to recognize the value of increasing confidence in PV performance modeling predictions, an increased focus on quality input solar data for PV energy estimation models is expected. Publicly available data sources were evaluated with respect to their suitability as input data for PV energy estimation. These included modeled data sources, publicly, available reference station data, and site-specific measured data. The results of a research study conducted at nine locations throughout the United States show that both the magnitude and the distribution of input solar data sets affect energy. The value of on-site solar data collection and its ability to reduce uncertainty from between 2% to 5% is presented, as demonstrated from a case study from a site in the United States Desert Southwest.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"81 1","pages":"003056-003060"},"PeriodicalIF":0.0,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75332117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
The effect of CdTe growth temperature and ZnTe:Cu contacting conditions on CdTe device performance CdTe生长温度和ZnTe:Cu接触条件对CdTe器件性能的影响
2012 38th IEEE Photovoltaic Specialists Conference Pub Date : 2012-06-03 DOI: 10.1109/PVSC.2012.6317598
J. Burst, W. Rance, T. Barnes, M. Reese, J. Li, D. Kuciauskas, M. Steiner, T. Gessert, K. Zhang, C. T. Hamilton, K. Fuller, B. Aitken, C. K. Kosik Williams
{"title":"The effect of CdTe growth temperature and ZnTe:Cu contacting conditions on CdTe device performance","authors":"J. Burst, W. Rance, T. Barnes, M. Reese, J. Li, D. Kuciauskas, M. Steiner, T. Gessert, K. Zhang, C. T. Hamilton, K. Fuller, B. Aitken, C. K. Kosik Williams","doi":"10.1109/PVSC.2012.6317598","DOIUrl":"https://doi.org/10.1109/PVSC.2012.6317598","url":null,"abstract":"CdTe device performance is strongly dependent on the quality of the back contact and the ability of the back contact to introduce a copper doping profile in the CdTe layer itself. Copper-doped ZnTe (ZnTe:Cu) is a nearly ideal contact material for CdTe solar cells due to its work function and ability to source copper to CdTe. Most of the ZnTe:Cu studies in the past used CdTe grown at relatively low deposition temperatures (550°C and below). Here we investigate the use of ZnTe:Cu as a back contact for CdTe grown at temperatures up to 620°C. We observe a strong interplay between the CdTe absorber deposition conditions and optimized ZnTe:Cu contacting conditions. Device JV characteristics suggest that CdTe solar cells with absorber layers deposited by close-space sublimation (CSS) at high temperature, 600-620°C, are more robust to the back contact Cu doping level and contacting temperature than CdTe grown at lower temperatures. The implication for industrial processes is a ~1% absolute increase in device efficiency for devices in which the CdTe is deposited on PV glass at high temperature. Perhaps more importantly, this increased performance is maintained for a larger window of temperature and doping level of the ZnTe:Cu back contact. For devices with CdTe absorbers deposited at 600°C, device efficiency in excess of 13.5% is maintained for back contacts containing 2-5 wt.% Cu, and for contacting temperatures ranging from 300-360°C. Red-light bias quantum efficiency (QE) and capacitance-voltage (CV) measurements are used to probe the effect of the introduced copper doping profiles and net acceptor density to better understand how ZnTe:Cu sources influences the resulting CdTe device.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"16 1","pages":"000188-000191"},"PeriodicalIF":0.0,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74058173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
The effect of tailoring electron/hole blocking layers on the photovoltaic performance of the single junction solar cells 定制电子/空穴阻挡层对单结太阳能电池光电性能的影响
2012 38th IEEE Photovoltaic Specialists Conference Pub Date : 2012-06-03 DOI: 10.1109/PVSC.2012.6318110
Ming-Han Hsieh, Yuh‐Renn Wu, J. Singh
{"title":"The effect of tailoring electron/hole blocking layers on the photovoltaic performance of the single junction solar cells","authors":"Ming-Han Hsieh, Yuh‐Renn Wu, J. Singh","doi":"10.1109/PVSC.2012.6318110","DOIUrl":"https://doi.org/10.1109/PVSC.2012.6318110","url":null,"abstract":"This paper discusses the effect of electron/hole blocking layer on the photovoltaic performance of the single junction solar cells. The study shows that with a pure electron blocking on the p-type doping Si and a pure hole blocking layer on n-type doing, it is possible to enhance the open circuit voltage and short circuit current. Therefore, the Ga2O3 and TiO2 materials are chosen as the electron and hole blocking layer. The result shows that the open circuit voltage increases from 0.65 eV to 0.80 eV, and the short circuit current increases from 35.1 mA/cm2 to 35.9 mA/cm2, where the power efficiency can increase from 21.9 % to 27.6 %. The super lattice quantum well structure as a electron/hole blocking layer has also been examined in this paper.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"62 1","pages":"002533-002536"},"PeriodicalIF":0.0,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74261525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low cost reliable highly concentrating photovoltaics - a reality 低成本可靠的高聚光光伏-一个现实
2012 38th IEEE Photovoltaic Specialists Conference Pub Date : 2012-06-03 DOI: 10.1109/PVSC.2012.6317913
A. Gombert
{"title":"Low cost reliable highly concentrating photovoltaics - a reality","authors":"A. Gombert","doi":"10.1109/PVSC.2012.6317913","DOIUrl":"https://doi.org/10.1109/PVSC.2012.6317913","url":null,"abstract":"Highly concentrating photovoltaic systems (HCPV) based on III-V multi-junction solar cells entered the PV market recently. Since 2008, HCPV power plants operate in various countries and valuable experiences could be gained. This paper gives an overview on Soitec's experiences, the lessons learned and the perspective on the cost competitiveness of HCPV. The costs the newest Concentrix CPV system CX-S530 were reduced significantly by a much larger module and a larger tracker, as well as by a much simplified cabling and tubing. A strong emphasis is put on the design for reliability, the role of process control for reliability, the reliability testing results and the field experience with respect to reliability. Soitec has installations on 20 locations in four continents. The systems operate in very different climatic conditions. So far, no module degradation could be measured or observed in the field after 4 years of operation and there is no field return due to degradation after in total one million module operation months.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"36 1","pages":"001651-001656"},"PeriodicalIF":0.0,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74559411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Development of a FPGA-based photovoltaic panel emulator based on a DC/DC converter 基于DC/DC变换器的fpga光伏板仿真器的研制
2012 38th IEEE Photovoltaic Specialists Conference Pub Date : 2012-06-03 DOI: 10.1109/PVSC.2012.6317863
D. Ickilli, H. Can, K. S. Parlak
{"title":"Development of a FPGA-based photovoltaic panel emulator based on a DC/DC converter","authors":"D. Ickilli, H. Can, K. S. Parlak","doi":"10.1109/PVSC.2012.6317863","DOIUrl":"https://doi.org/10.1109/PVSC.2012.6317863","url":null,"abstract":"Being electrically similar to PV panels, photovoltaic (PV) emulator systems make it possible to perform different PV system tests under various operating conditions. In this paper, we present a photovoltaic emulator system based on a dc/dc converter. Our model can handle the dependence of all the parameters in the model with respect to solar irradiation and temperature. The proposed emulator system is controlled by an Altera Cyclone-III FPGA development board. The experimental results show that the output characteristics of the emulator have good agreement with those of the actual photovoltaic panel in various loads and environmental conditions.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"84 1","pages":"001417-001421"},"PeriodicalIF":0.0,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74568390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信