{"title":"Identification of novel inhibitors targeting PI3Kα via ensemble-based virtual screening method, biological evaluation and molecular dynamics simulation","authors":"Hui Zhang, Hua-Zhao Qi, Ya-Juan Li, Xiu-Yun Shi, Mei-Ling Hu, Xiang-Long Chen, Yuan Li","doi":"10.1007/s10822-024-00580-2","DOIUrl":"10.1007/s10822-024-00580-2","url":null,"abstract":"<div><p>PIK3CA gene encoding PI3K p110α is one of the most frequently mutated and overexpressed in majority of human cancers. Development of potent and selective novel inhibitors targeting PI3Kα was considered as the most promising approaches for cancer treatment. In this investigation, a virtual screening platform for PI3Kα inhibitors was established by employing machine learning methods, pharmacophore modeling, and molecular docking approaches. 28 potential PI3Kα inhibitors with different scaffolds were selected from the databases with 295,024 compounds. Among the 28 hits, hit15 exhibited the best inhibitory effect against PI3Kα with IC<sub>50</sub> value less than 1.0 µM. The molecular dynamics simulation indicated that hit15 could stably bind to the active site of PI3Kα, interact with some residues by hydrophobic, electrostatic and hydrogen bonding interactions, and finally induced PI3Kα active pocket substantial conformation changes. Stable H-bond interactions were formed between hit15 and residues of Lys776, Asp810 and Asp933. The binding free energy of PI3Kα-hit15 was − 65.3 kJ/mol. The free energy decomposition indicated that key residues of Asp805, Ile848 and Ile932 contributed stronger energies to the binding free energy. The above results indicated that hit15 with novel scaffold was a potent PI3Kα inhibitor and considered as a promising candidate for further drug development to treat various cancers with PI3Kα over activated.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"38 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adiran Garaizar Suarez, Andreas H. Göller, Michael E. Beck, Sadra Kashef Ol Gheta, Katharina Meier
{"title":"Comparative assessment of physics-based in silico methods to calculate relative solubilities","authors":"Adiran Garaizar Suarez, Andreas H. Göller, Michael E. Beck, Sadra Kashef Ol Gheta, Katharina Meier","doi":"10.1007/s10822-024-00576-y","DOIUrl":"10.1007/s10822-024-00576-y","url":null,"abstract":"<div><p>Relative solubilities, i.e. whether a given molecule is more soluble in one solvent compared to others, is a critical parameter for pharmaceutical and agricultural formulation development and chemical synthesis, material science, and environmental chemistry. In silico predictions of this crucial variable can help reducing experiments, waste of solvents and synthesis optimization. In this study, we evaluate the performance of different physics-based methods for predicting relative solubilities. Our assessment involves quantum mechanics-based COSMO-RS and molecular dynamics-based free energy methods using OPLS4, the open-source OpenFF Sage, and GAFF force fields, spanning over 200 solvent–solute combinations. Our investigation highlights the important role of compound multimerization, an effect which must be accounted for to obtain accurate relative solubility predictions. The performance landscape of these methods is varied, with significant differences in precision depending on both the method used and the solute considered, thereby offering an improved understanding of the predictive power of physics-based methods in chemical research.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"38 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational Identification and Illustrative Standard for Representation of Unimolecular G-Quadruplex Secondary Structures (CIIS-GQ)","authors":"Tugay Direk, Osman Doluca","doi":"10.1007/s10822-024-00573-1","DOIUrl":"10.1007/s10822-024-00573-1","url":null,"abstract":"<div><p>G-quadruplexes refer to a large group of nucleic acid–based structures. In recent years, they have been attracting attention due to their biological roles in the telomeres and promoter regions. These structures show wide diversity in topology, however, development of methods for structural classification of G-quadruplexes has been evaded for a long time. There has been a limited number of studies aiming to bring forth a secondary structure classification method. The situation was even more complex than imagined, since the discovery of bulged and mismatched G-quadruplexes while most of the available tools fail to distinguish these non-canonical G-quadruplex motifs. Moreover, the interpretation of their analysis output still requires expert knowledge. In this study, we propose a new method for identification of unimolecular G-Quadruplexes and classification by secondary structures based on three-dimensional structural data. Briefly, coordinates of guanines are processed to identify tetrads, loops and bulges. Then, we present the secondary structure in the form of a depiction which shows the loop types, bulges, and guanines that participate in each tetrad. Moreover, CIIS-GQ identifies non-guanine nucleotides that joins the G-tetrads and forms multiplets. Finally, the results of our study are compared with DSSR and ElTetrado classification methods, and the advantages of the proposed depiction method for representing secondary structures were discussed. The source code of the method can be accessed via https://github.com/TugayDirek/CIIS-GQ.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"38 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Steered molecular dynamics simulation as a post-process to optimize the iBRAB-designed Fab model","authors":"Phuc-Chau Do, Vy T. T. Le","doi":"10.1007/s10822-024-00575-z","DOIUrl":"10.1007/s10822-024-00575-z","url":null,"abstract":"<div><p>Therapeutic monoclonal antibodies are an effective method of treating acute infectious diseases. However, knowing which of the produced antibodies in the vast number of human antibodies can cure the disease requires a long time and advanced technology. The previously introduced <i>i</i>BRAB method relies on studied antibodies to design a broad-spectrum antibody capable of neutralizing antigens of many different Influenza A viral strains. To evaluate the antigen-binding fragment as an applicable drug, the therapeutic antibody profiles providing guidelines collected from clinically staged therapeutic antibodies were used to access different measurements. Although the evaluated values were within an accepted range, the modification in the amino acid sequence is required for better properties. Thus, using the steered molecular dynamics (SMD) simulation to determine the binding capacity of amino acids in the functional region, the profile of interacted amino acids of Fab with the antigen was established for modified reference. As a result, the model was modified with amino acids elimination at positions 96–97 in the heavy chain and 26–27, 91, 96–97, and 102–103 in the light chain, which has better Therapeutic Antibody Profiler evaluations than the original designation. Thus again, SMD simulation is a promising computational approach for post-modification in rational drug design.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"38 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structure-based pose prediction: Non-cognate docking extended to macrocyclic ligands","authors":"Ann E. Cleves, Himani Tandon, Ajay N. Jain","doi":"10.1007/s10822-024-00574-0","DOIUrl":"10.1007/s10822-024-00574-0","url":null,"abstract":"<div><p>So-called “cross-docking” is the prediction of the bound configuration of small-molecule ligands that differ from the cognate ligand of a protein co-crystal structure. This is a much more challenging problem than re-docking the cognate ligand, particularly when the new ligand is structurally dissimilar from prior known ones. We have updated the previously introduced PINC (“PINC Is Not Cognate”) benchmark which introduced the idea of temporal segregation to measure cross-docking performance. The temporal set encompasses 846 <i>future</i> ligands for ten targets based on information from the earliest 25% of X-ray co-crystal structures known for each target. Here, we extend the benchmark to include thirteen targets where the bound poses of 128 macrocyclic ligands are to be predicted based on knowledge from structures of bound <i>non-macrocyclic</i> ligands. Performance was roughly equivalent for both the temporally-split non-macrocyclic ligand set and the macrocycle prediction set. Using standard and fully automatic protocols for the Surflex-Dock and ForceGen methods, across the combined 974 non-macrocyclic and macrocyclic ligands, the top-scoring pose family was correct 68% of the time, with the top-two pose families achieving a 79% success rate. Correct poses among all those predicted were identified 92% of the time. These success rates far exceeded those observed for the alternative methods AutoDock Vina and Gnina on both sets.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"38 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10822-024-00574-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyosoon Jang, Sangmin Seo, Sanghyun Park, Byung Ju Kim, Geon-Woo Choi, Jonghwan Choi, Chihyun Park
{"title":"De novo drug design through gradient-based regularized search in information-theoretically controlled latent space","authors":"Hyosoon Jang, Sangmin Seo, Sanghyun Park, Byung Ju Kim, Geon-Woo Choi, Jonghwan Choi, Chihyun Park","doi":"10.1007/s10822-024-00571-3","DOIUrl":"10.1007/s10822-024-00571-3","url":null,"abstract":"<div><p>Over the last decade, automatic chemical design frameworks for discovering molecules with drug-like properties have significantly progressed. Among them, the variational autoencoder (VAE) is a cutting-edge approach that models the tractable latent space of the molecular space. In particular, the usage of a VAE along with a property estimator has attracted considerable interest because it enables gradient-based optimization of a given molecule. However, although successful results have been achieved experimentally, the theoretical background and prerequisites for the correct operation of this method have not yet been clarified. In view of the above, we theoretically analyze and rigorously reconstruct the entire framework. From the perspective of parameterized distribution and the information theory, we first describe how the previous model overcomes the limitations of the beta VAE in discovering molecules with the desired properties. Furthermore, we describe the prerequisites for training the above model. Next, from the log-likelihood perspective of each term, we reformulate the objectives for exploring latent space to generate drug-like molecules. The distributional constraints are defined in this study, which will break away from the invalid molecular search. We demonstrated that our model could discover a novel chemical compound for targeting BCL-2 family proteins in de novo approach. Through the theoretical analysis and practical implementation, the importance of the aforementioned prerequisites and constraints to operate the model was verified.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"38 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational design and experimental confirmation of a disulfide-stapled YAP helixα1-trap derived from TEAD4 helical hairpin to selectively capture YAP α1-helix with potent antitumor activity","authors":"Kaipeng Li, Lijun Liu","doi":"10.1007/s10822-024-00572-2","DOIUrl":"10.1007/s10822-024-00572-2","url":null,"abstract":"<div><p>Human Hippo signaling pathway is an evolutionarily conserved regulator network that controls organ development and has been implicated in various cancers. Transcriptional enhanced associate domain-4 (TEAD4) is the final nuclear effector of Hippo pathway, which is activated by Yes-associated protein (YAP) through binding to two separated YAP regions of α1-helix and Ω-loop. Previous efforts have all been addressed on deriving peptide inhibitors from the YAP to target TEAD4. Instead, we herein attempted to rationally design a so-called ‘YAP helix<sup>α1</sup>-trap’ based on the TEAD4 to target YAP by using dynamics simulation and energetics analysis as well as experimental assays at molecular and cellular levels. The trap represents a native double-stranded helical hairpin covering a specific YAP-binding site on TEAD4 surface, which is expected to form a three-helix bundle with the α1-helical region of YAP, thus competitively disrupting TEAD4–YAP interaction. The hairpin was further stapled by a disulfide bridge across its two helical arms. Circular dichroism characterized that the stapling can effectively constrain the trap into a native-like structured conformation in free state, thus largely minimizing the entropy penalty upon its binding to YAP. Affinity assays revealed that the stapling can considerably improve the trap binding potency to YAP α1-helix by up to 8.5-fold at molecular level, which also exhibited a good tumor-suppressing effect at cellular level if fused with TAT cell permeation sequence. In this respect, it is considered that the YAP helix<sup>α1</sup>-trap-mediated blockade of Hippo pathway may be a new and promising therapeutic strategy against cancers.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"38 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel A. M. Pais, Jan-Peter A. Mayer, Karin Felderer, Maria B. Batalha, Timo Eichner, Sofia T. Santos, Raman Kumar, Sandra D. Silva, Hitto Kaufmann
{"title":"Holistic in silico developability assessment of novel classes of small proteins using publicly available sequence-based predictors","authors":"Daniel A. M. Pais, Jan-Peter A. Mayer, Karin Felderer, Maria B. Batalha, Timo Eichner, Sofia T. Santos, Raman Kumar, Sandra D. Silva, Hitto Kaufmann","doi":"10.1007/s10822-024-00569-x","DOIUrl":"10.1007/s10822-024-00569-x","url":null,"abstract":"<div><p>The development of novel therapeutic proteins is a lengthy and costly process, with an average attrition rate of 91% (Thomas et al. Clinical Development Success Rates and Contributing Factors 2011–2020, 2021). To increase the probability of success and ensure robust drug supply beyond approval, it is essential to assess the developability profile of new potential drug candidates as early and broadly as possible in development (Jain et al. MAbs, 2023. https://doi.org/10.1016/j.copbio.2011.06.002). Predicting these properties in silico is expected to be the next leap in innovation as it would enable significantly reduced development timelines combined with broader screens at lower costs. However, developing predictive algorithms typically requires substantial datasets generated under very defined conditions, a limiting factor especially for new classes of therapeutic proteins that hold immense clinical promise. Here we describe a strategy for assessing the developability of a novel class of small therapeutic Anticalin® proteins using machine learning in conjunction with a knowledge-driven approach. The knowledge-driven approach considers developability attributes such as aggregation propensity, charge variants, immunogenicity, specificity, thermal stability, hydrophobicity, and potential post-translational modifications, to calculate a holistic developability score. Based on sequence-derived descriptors as input parameters we established novel statistical models designed to predict the developability scores for Anticalin proteins. The best models yielded low root mean square errors across the entire dataset and were further validated by removing input data from individual screening campaigns and predicting developability scores for those drug candidates. The adoption of the described workflow will enable significantly streamlined preclinical development of Anticalin drug candidates and could potentially be applied to other therapeutic protein scaffolds.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"38 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FitScore: a fast machine learning-based score for 3D virtual screening enrichment","authors":"Daniel K. Gehlhaar, Daniel J. Mermelstein","doi":"10.1007/s10822-024-00570-4","DOIUrl":"10.1007/s10822-024-00570-4","url":null,"abstract":"<div><p>Enhancing virtual screening enrichment has become an urgent problem in computational chemistry, driven by increasingly large databases of commercially available compounds, without a commensurate drop in in vitro screening costs. Docking these large databases is possible with cloud-scale computing. However, rapid docking necessitates compromises in scoring, often leading to poor enrichment and an abundance of false positives in docking results. This work describes a new scoring function composed of two parts – a knowledge-based component that predicts the probability of a particular atom type being in a particular receptor environment, and a tunable weight matrix that converts the probability predictions into a dimensionless score suitable for virtual screening enrichment. This score, the FitScore, represents the compatibility between the ligand and the binding site and is capable of a high degree of enrichment across standardized docking test sets.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"38 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of human lactate dehydrogenase a inhibitors: high-throughput screening, molecular dynamics simulation and enzyme activity assay","authors":"Yuanyuan Shu, Jianda Yue, Yaqi Li, Yekui Yin, Jiaxu Wang, Tingting Li, Xiao He, Songping Liang, Gaihua Zhang, Zhonghua Liu, Ying Wang","doi":"10.1007/s10822-024-00568-y","DOIUrl":"10.1007/s10822-024-00568-y","url":null,"abstract":"<div><p>Lactate dehydrogenase A (LDHA) is highly expressed in many tumor cells and promotes the conversion of pyruvate to lactic acid in the glucose pathway, providing energy and synthetic precursors for rapid proliferation of tumor cells. Therefore, inhibition of LDHA has become a widely concerned tumor treatment strategy. However, the research and development of highly efficient and low toxic LDHA small molecule inhibitors still faces challenges. To discover potential inhibitors against LDHA, virtual screening based on molecular docking techniques was performed from Specs database of more than 260,000 compounds and Chemdiv-smart database of more than 1,000 compounds. Through molecular dynamics (MD) simulation studies, we identified 12 potential LDHA inhibitors, all of which can stably bind to human LDHA protein and form multiple interactions with its active central residues. In order to verify the inhibitory activities of these compounds, we established an enzyme activity assay system and measured their inhibitory effects on recombinant human LDHA. The results showed that Compound 6 could inhibit the catalytic effect of LDHA on pyruvate in a dose-dependent manner with an EC<sub>50</sub> value of 14.54 ± 0.83 µM. Further in vitro experiments showed that Compound 6 could significantly inhibit the proliferation of various tumor cell lines such as pancreatic cancer cells and lung cancer cells, reduce intracellular lactic acid content and increase intracellular reactive oxygen species (ROS) level. In summary, through virtual screening and in vitro validation, we found that Compound 6 is a small molecule inhibitor for LDHA, providing a good lead compound for the research and development of LDHA related targeted anti-tumor drugs.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"38 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}