{"title":"乳腺癌中AKT1突变的理论研究:结构和功能见解的计算方法","authors":"Balu Kamaraj, George Priya Doss C","doi":"10.1007/s10822-025-00601-8","DOIUrl":null,"url":null,"abstract":"<div><p>Breast cancer is a complex disease primarily driven by genetic mutations that disrupt crucial signaling pathways, with the <i>AKT1</i> gene playing a central role in its progression. This study explores the impact of AKT1 mutations using Whole Exome Sequencing (WES), bioinformatics, and computational modeling. Using WES, we identified and prioritized significant mutations in patient samples, specifically D3N, V337M, and D3N-E169G. Comprehensive sequence and structural analyses were conducted to understand how these mutations affect specific functional domains of the AKT1 protein. To investigate the molecular consequences, molecular docking studies were performed to assess the binding affinity of AKT1 mutations with MK2206, a known allosteric inhibitor of AKT1. The docking results revealed substantial differences in interaction energies, indicating impaired inhibitor binding due to these mutations. Additionally, molecular dynamics simulations over a 500-nanosecond trajectory provided detailed insights into the structural perturbations caused by these mutations. This integrated study, combining genomic and computational approaches, offers a comprehensive understanding of how AKT1 mutations contribute to BC pathogenesis. These findings enhance our knowledge of the molecular mechanisms underlying the disease and support the development of targeted therapies to address the altered behavior of mutated AKT1, advancing personalized treatment strategies for BC.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"39 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical investigation of AKT1 mutations in breast cancer: a computational approach to structural and functional insights\",\"authors\":\"Balu Kamaraj, George Priya Doss C\",\"doi\":\"10.1007/s10822-025-00601-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Breast cancer is a complex disease primarily driven by genetic mutations that disrupt crucial signaling pathways, with the <i>AKT1</i> gene playing a central role in its progression. This study explores the impact of AKT1 mutations using Whole Exome Sequencing (WES), bioinformatics, and computational modeling. Using WES, we identified and prioritized significant mutations in patient samples, specifically D3N, V337M, and D3N-E169G. Comprehensive sequence and structural analyses were conducted to understand how these mutations affect specific functional domains of the AKT1 protein. To investigate the molecular consequences, molecular docking studies were performed to assess the binding affinity of AKT1 mutations with MK2206, a known allosteric inhibitor of AKT1. The docking results revealed substantial differences in interaction energies, indicating impaired inhibitor binding due to these mutations. Additionally, molecular dynamics simulations over a 500-nanosecond trajectory provided detailed insights into the structural perturbations caused by these mutations. This integrated study, combining genomic and computational approaches, offers a comprehensive understanding of how AKT1 mutations contribute to BC pathogenesis. These findings enhance our knowledge of the molecular mechanisms underlying the disease and support the development of targeted therapies to address the altered behavior of mutated AKT1, advancing personalized treatment strategies for BC.</p></div>\",\"PeriodicalId\":621,\"journal\":{\"name\":\"Journal of Computer-Aided Molecular Design\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer-Aided Molecular Design\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-025-00601-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-025-00601-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Theoretical investigation of AKT1 mutations in breast cancer: a computational approach to structural and functional insights
Breast cancer is a complex disease primarily driven by genetic mutations that disrupt crucial signaling pathways, with the AKT1 gene playing a central role in its progression. This study explores the impact of AKT1 mutations using Whole Exome Sequencing (WES), bioinformatics, and computational modeling. Using WES, we identified and prioritized significant mutations in patient samples, specifically D3N, V337M, and D3N-E169G. Comprehensive sequence and structural analyses were conducted to understand how these mutations affect specific functional domains of the AKT1 protein. To investigate the molecular consequences, molecular docking studies were performed to assess the binding affinity of AKT1 mutations with MK2206, a known allosteric inhibitor of AKT1. The docking results revealed substantial differences in interaction energies, indicating impaired inhibitor binding due to these mutations. Additionally, molecular dynamics simulations over a 500-nanosecond trajectory provided detailed insights into the structural perturbations caused by these mutations. This integrated study, combining genomic and computational approaches, offers a comprehensive understanding of how AKT1 mutations contribute to BC pathogenesis. These findings enhance our knowledge of the molecular mechanisms underlying the disease and support the development of targeted therapies to address the altered behavior of mutated AKT1, advancing personalized treatment strategies for BC.
期刊介绍:
The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas:
- theoretical chemistry;
- computational chemistry;
- computer and molecular graphics;
- molecular modeling;
- protein engineering;
- drug design;
- expert systems;
- general structure-property relationships;
- molecular dynamics;
- chemical database development and usage.