{"title":"Design Improvements and Validation of a Novel Fully 3D Printed Analogue Lumbar Spine Motion Segment","authors":"Siril Teja Dukkipati, Mark Driscoll","doi":"10.1007/s42235-024-00512-8","DOIUrl":"10.1007/s42235-024-00512-8","url":null,"abstract":"<div><p>Spine biomechanical testing methods in the past few decades have not evolved beyond employing either cadaveric studies or finite element modeling techniques. However, both these approaches may have inherent cost and time limitations. Cadaveric studies are the present gold standard for spinal implant design and regulatory approval, but they introduce significant variability in measurements across patients, often requiring large sample sizes. Finite element modeling demands considerable expertise and can be computationally expensive when complex geometry and material nonlinearity are introduced. Validated analogue spine models could complement these traditional methods as a low-cost and high-fidelity alternative. A fully 3D printable L-S1 analogue spine model with ligaments is developed and validated in this research. Rotational stiffness of the model under pure bending loading in flexion-extension, Lateral Bending (LB) and Axial Rotation (AR) is evaluated and compared against historical ex vivo and in silico models. Additionally, the effect of interspinous, intertransverse ligaments and the Thoracolumbar Fascia (TLF) on spinal stiffness is evaluated by systematic construction of the model. In flexion, model Range of Motion (ROM) was 12.92 ± 0.11° (ex vivo: 16.58°, in silico: 12.96°) at 7.5Nm. In LB, average ROM was 13.67 ± 0.12° at 7.5 Nm (ex vivo: 15.21 ± 1.89°, in silico: 15.49 ± 0.23°). Similarly, in AR, average ROM was 17.69 ± 2.12° at 7.5Nm (ex vivo: 14.12 ± 0.31°, in silico: 15.91 ± 0.28°). The addition of interspinous and intertransverse ligaments increased both flexion and LB stiffnesses by approximately 5%. Addition of TLF showed increase in flexion and AR stiffnesses by 29% and 24%, respectively. This novel model can reproduce physiological ROMs with high repeatability and could be a useful open-source tool in spine biomechanics.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1388 - 1396"},"PeriodicalIF":4.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140882931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad H. Nadimi-Shahraki, Hajar Farhanginasab, Shokooh Taghian, Ali Safaa Sadiq, Seyedali Mirjalili
{"title":"Multi-trial Vector-based Whale Optimization Algorithm","authors":"Mohammad H. Nadimi-Shahraki, Hajar Farhanginasab, Shokooh Taghian, Ali Safaa Sadiq, Seyedali Mirjalili","doi":"10.1007/s42235-024-00493-8","DOIUrl":"10.1007/s42235-024-00493-8","url":null,"abstract":"<div><p>The Whale Optimization Algorithm (WOA) is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic of humpback whales. In spite of its popularity due to simplicity, ease of implementation, and a limited number of parameters, WOA’s search strategy can adversely affect the convergence and equilibrium between exploration and exploitation in complex problems. To address this limitation, we propose a new algorithm called Multi-trial Vector-based Whale Optimization Algorithm (MTV-WOA) that incorporates a Balancing Strategy-based Trial-vector Producer (BS_TVP), a Local Strategy-based Trial-vector Producer (LS_TVP), and a Global Strategy-based Trial-vector Producer (GS_TVP) to address real-world optimization problems of varied degrees of difficulty. MTV-WOA has the potential to enhance exploitation and exploration, reduce the probability of being stranded in local optima, and preserve the equilibrium between exploration and exploitation. For the purpose of evaluating the proposed algorithm's performance, it is compared to eight metaheuristic algorithms utilizing CEC 2018 test functions. Moreover, MTV-WOA is compared with well-stablished, recent, and WOA variant algorithms. The experimental results demonstrate that MTV-WOA surpasses comparative algorithms in terms of the accuracy of the solutions and convergence rate. Additionally, we conducted the Friedman test to assess the gained results statistically and observed that MTV-WOA significantly outperforms comparative algorithms. Finally, we solved five engineering design problems to demonstrate the practicality of MTV-WOA. The results indicate that the proposed MTV-WOA can efficiently address the complexities of engineering challenges and provide superior solutions that are superior to those of other algorithms.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1465 - 1495"},"PeriodicalIF":4.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Efficient Multi-objective Approach Based on Golden Jackal Search for Dynamic Economic Emission Dispatch","authors":"Keyu Zhong, Fen Xiao, Xieping Gao","doi":"10.1007/s42235-024-00504-8","DOIUrl":"10.1007/s42235-024-00504-8","url":null,"abstract":"<div><p>Dynamic Economic Emission Dispatch (DEED) aims to optimize control over fuel cost and pollution emission, two conflicting objectives, by scheduling the output power of various units at specific times. Although many methods well-performed on the DEED problem, most of them fail to achieve expected results in practice due to a lack of effective trade-off mechanisms between the convergence and diversity of non-dominated optimal dispatching solutions. To address this issue, a new multi-objective solver called Multi-Objective Golden Jackal Optimization (MOGJO) algorithm is proposed to cope with the DEED problem. The proposed algorithm first stores non-dominated optimal solutions found so far into an archive. Then, it chooses the best dispatching solution from the archive as the leader through a selection mechanism designed based on elite selection strategy and Euclidean distance index method. This mechanism can guide the algorithm to search for better dispatching solutions in the direction of reducing fuel costs and pollutant emissions. Moreover, the basic golden jackal optimization algorithm has the drawback of insufficient search, which hinders its ability to effectively discover more Pareto solutions. To this end, a non-linear control parameter based on the cosine function is introduced to enhance global exploration of the dispatching space, thus improving the efficiency of finding the optimal dispatching solutions. The proposed MOGJO is evaluated on the latest CEC benchmark test functions, and its superiority over the state-of-the-art multi-objective optimizers is highlighted by performance indicators. Also, empirical results on 5-unit, 10-unit, IEEE 30-bus, and 30-unit systems show that the MOGJO can provide competitive compromise scheduling solutions compared to published DEED methods. Finally, in the analysis of the Pareto dominance relationship and the Euclidean distance index, the optimal dispatching solutions provided by MOGJO are the closest to the ideal solutions for minimizing fuel costs and pollution emissions simultaneously, compared to the latest published DEED solutions.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1541 - 1566"},"PeriodicalIF":4.9,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to: Image Fusion Based on Bioinspired Rattlesnake Visual Mechanism Under Lighting Environments of Day and Night Two Levels","authors":"Yong Wang, Hongmin Zou","doi":"10.1007/s42235-024-00529-z","DOIUrl":"10.1007/s42235-024-00529-z","url":null,"abstract":"","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1619 - 1619"},"PeriodicalIF":4.9,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140685398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Graded Speed Control Method for Cyborg Rats Based on Electrical Stimulation of the Cuneiform Nucleus","authors":"Hanyi Ling, Le Han, Nenggan Zheng","doi":"10.1007/s42235-024-00501-x","DOIUrl":"10.1007/s42235-024-00501-x","url":null,"abstract":"<div><p>The precise movement speed regulation is a key factor to improve the control effect and efficiency of the cyborg rats. However, the current stimulation techniques cannot realize the graded control of the speed. In this study, we achieved the multi-level speed regulation of cyborg rats in the large open field and treadmill by specifically targeting the Cuneiform Nucleus (CnF) of the Mesencephalic Locomotor Region (MLR). Detailed, we measured the influence of each stimulation parameter on the speed control process which included the real-time speed, accelerated speed, response time, and acceleration period. We concluded that the pulse period and the pulse width were the main determinants influencing the accelerated speed of cyborg rats. Whereas the amplitude of stimulation was found to affect the response time exhibited by the cyborg rats. Our study provides valuable insights into the regulation of rat locomotion speed and highlights the potential for utilizing this approach in various experimental settings.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1334 - 1346"},"PeriodicalIF":4.9,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140627378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Durable Design of Superhydrophobic Coatings with TiO2 Particles and Al2O3 Whiskers for the Enhanced Anti-icing Performance","authors":"Weilan Liu, Kunlong Li, Yizhou Shen, Huanyu Zhao, Yaru Ni, Zeyu Cai, Lingfeng Zhao, Zhen Wang","doi":"10.1007/s42235-024-00516-4","DOIUrl":"10.1007/s42235-024-00516-4","url":null,"abstract":"<div><p>Superhydrophobic coatings with high non-wetting properties are widely applied in anti-icing applications. However, the micro-nanostructures on the surfaces of superhydrophobic coatings are fragile under external forces, resulting in reduced durability. Therefore, mechanical strength and durability play a crucial role in the utilization of superhydrophobic materials. In this study, we employed a two-step spraying method to fabricate superhydrophobic FEVE-based coatings with exceptional mechanical durability, utilizing fluorinated TiO<sub>2</sub> nanoparticles and fluorinated Al<sub>2</sub>O<sub>3</sub> microwhiskers as the fillers. The composite coating exhibited commendable non-wetting properties, displaying a contact angle of 164.84° and a sliding angle of 4.3°. On this basis, the stability of coatings was significantly improved due to the interlocking effect of Al<sub>2</sub>O<sub>3</sub> whiskers. After 500 tape peeling cycles, 500 sandpaper abrasion tests, and 50 kg falling sand impact tests, the coatings retained superhydrophobicity, exhibiting excellent durability and application capability. Notably, the ice adhesion strength on the coatings was measured at only 65.4 kPa, while the icing delay time reached 271.8 s at -15 °C. In addition, throughout 500 freezing/melting cycles, statistical analysis revealed that the superhydrophobic coatings exhibited a freezing initiation temperature as low as -17.25 °C.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1360 - 1374"},"PeriodicalIF":4.9,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anisotropic Mechanical Response of Nacre to Heat Treatment Under Indentation: Effect of Structural Orientation","authors":"Simin Liang, Yingying Li, Hongmei Ji, Xiaowu Li","doi":"10.1007/s42235-024-00508-4","DOIUrl":"10.1007/s42235-024-00508-4","url":null,"abstract":"<div><p>It is generally considered that heat treatments have a negative impact on the mechanical properties of nacre due to thermal decomposition of the organic matrix. However, the present work investigated the microindentation behavior on fresh and heat-treated nacres from two orthogonal directions, and the results demonstrate that both hardness value and damage tolerance can remain almost unchanged on the cross-section with the organic matrix degeneration, despite a significant deterioration on the platelet surface. Theoretical analyses suggest that the anisotropic response of indentation behavior to heat treatment in nacre is primarily caused by its structural orientation. Specifically, compared with a single layer of irregular interplatelet interfaces in cross-sectional specimens, the multiple layers of parallel interlamellar interfaces in in-plane specimens exhibit a much greater ability to impede indenter-triggered destruction, and heat treatments would reduce the in-plane hardness but nearly have no effect on the cross-sectional hardness. Moreover, the deeper embedding of platelets in cross-sectional specimens enhances their resistance to interface cracking caused by organic matrix degradation at high temperatures, leading to a reduced sensitivity to damage. Therefore, the indentation behavior of nacre shows different tendencies in response to variations in the organic matrix state along normal and parallel directions.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1453 - 1464"},"PeriodicalIF":4.9,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"APFA: Ameliorated Pathfinder Algorithm for Engineering Applications","authors":"Keyu Zhong, Fen Xiao, Xieping Gao","doi":"10.1007/s42235-024-00510-w","DOIUrl":"10.1007/s42235-024-00510-w","url":null,"abstract":"<div><p>Pathfinder algorithm (PFA) is a swarm intelligent optimization algorithm inspired by the collective activity behavior of swarm animals, imitating the leader in the population to guide followers in finding the best food source. This algorithm has the characteristics of a simple structure and high performance. However, PFA faces challenges such as insufficient population diversity and susceptibility to local optima due to its inability to effectively balance the exploration and exploitation capabilities. This paper proposes an Ameliorated Pathfinder Algorithm called APFA to solve complex engineering optimization problems. Firstly, a guidance mechanism based on multiple elite individuals is presented to enhance the global search capability of the algorithm. Secondly, to improve the exploration efficiency of the algorithm, the Logistic chaos mapping is introduced to help the algorithm find more high-quality potential solutions while avoiding the worst solutions. Thirdly, a comprehensive following strategy is designed to avoid the algorithm falling into local optima and further improve the convergence speed. These three strategies achieve an effective balance between exploration and exploitation overall, thus improving the optimization performance of the algorithm. In performance evaluation, APFA is validated by the CEC2022 benchmark test set and five engineering optimization problems, and compared with the state-of-the-art metaheuristic algorithms. The numerical experimental results demonstrated the superiority of APFA.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1592 - 1616"},"PeriodicalIF":4.9,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140573714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Control of an Autonomous Bat-like Perching UAV","authors":"Long Bai, Wei Wang, Xiaohong Chen, Yuanxi Sun","doi":"10.1007/s42235-024-00502-w","DOIUrl":"10.1007/s42235-024-00502-w","url":null,"abstract":"<div><p>Perching allows small Unmanned Aerial Vehicles (UAVs) to maintain their altitude while significantly extending their flight duration and reducing noise. However, current research on flying habitats is poorly adapted to unstructured environments, and lacks autonomous capabilities, requiring ideal experimental environments and remote control by personnel. To solve these problems, in this paper, we propose a bat-like UAV perching mechanism by investigating the bat upside-down perching method, which realizes double self-locking in the perching state using the ratchet and four-link dead point mechanisms. Based on this perching mechanism, this study proposes a control strategy for UAVs to track targets and accomplish flight perching autonomously by combining a binocular camera, single-point LiDAR, and pressure sensors. Autonomous perching experiments were conducted for crossbar-type objects outdoors. The experimental results show that a multirotor UAV equipped with the perching mechanism and sensors can reliably achieve autonomous flight perching and re-flying off the target outdoors. The power consumption is reduced to 2.9% of the hovering state when perched on the target object.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1253 - 1264"},"PeriodicalIF":4.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140573690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioinspired Hollow Mesoporous Silica Nanoparticles Coating on Titanium Alloy with Hierarchical Structure for Modulating Cellular Functions","authors":"Jiaxin Zhang, He Liu, Jincheng Wang, Jing Shang, Mingwei Xu, Xiujie Zhu, Chao Xu, Haotian Bai, Xin Zhao","doi":"10.1007/s42235-024-00511-9","DOIUrl":"10.1007/s42235-024-00511-9","url":null,"abstract":"<div><p>3D-printed Porous Titanium Alloy Implants (pTi), owing to their biologically inertness and relatively smooth surface morphology, adversely affect the biological functions of surrounding cells. To address the challenges, constructing a bioinspired interface that mimics the hierarchical structure of bone tissue can enhance the cellular functions of cells. In this context, Hollow Mesoporous Silica Nanoparticles (HMSNs), renowned for their unique physicochemical properties and superior biocompatibility, offer a promising direction for this research. In this research, the initially synthesized HMSNs were used to construct a “hollow-mesoporous-macroporous” hierarchical bioinspired coating on the pTi surface through the Layer-by-Layer technique. Simultaneously, diverse morphologies of coatings were established by adjusting the deposition strategy of PDDA/HMSNs on the pTi surface (pTi-HMSN-2, pTi-HMSN-4, pTi-HMSN-6). A range of techniques were employed to investigate the physicochemical properties and regulation of cellular biological functions of the diverse HMSN coating strategies. Notably, the pTi-HMSN-4 and pTi-HMSN-6 groups exhibited the uniform coatings, leading to a substantial enhancement in surface roughness and hydrophilicity. Meantime, the coating constructed strategy of pTi-HMSN-4 possessed commendable stability. Based on the aforementioned findings, both pTi-HMSN-4 and pTi-HMSN-6 facilitated the adhesion, spreading, and pseudopodia extension of BMSCs, which led to a notable upsurge in the expression levels of vinculin protein in BMSCs. Comprehensive analysis indicates that the coating, when PDDA/HMSNs are deposited four times, possesses favorable overall performance. The research will provide a solid theoretical basis for the translation of HMSN bioinspired coatings for orthopedic implants.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1427 - 1441"},"PeriodicalIF":4.9,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140573490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}