Laser-Induced Graphene (LIG) is regarded as a promising sensor carrier due to its inherent three-dimensional porous structure. However, as two mutually exclusive properties of the pressure sensor, sensitivity and working range are difficult to be further improved by the single porous structure. Inspired by the unique geometry of Oxalis corniculata L. leaves, we here propose a novel method consist of laser pre-etching and inducing steps to fabricate LIG-based electrodes with a two-stage architecture featuring microjigsaw and microporous structures. The following injection of liquid-silicone significantly improves the friction resistance and bending reliability of LIG materials. The interface contact between external microjigsaw structures induces substantial resistance changes, and the internal microporous structure exhibits reversibility during dynamic deformation. Consequently, the jigsaw-like pressure sensor achieves a balanced performance with sensitivities of 3.64, 1.20 and 0.03 kPa− 1 in pressure range of 0 − 20, 20 − 40 and 40 − 150 kPa, respectively. The bionic LIG-based pressure sensor serves as the core component and further integrated with an all-in-one wireless transmission system capable of monitoring various health parameters such as subtle pulse rates, heartbeat rhythms, sounds, etc., indicating broad prospects in future wearable electronics.