3D Printed Gear-Based Quasi-Zero Stiffness Vibration Isolation Metastructure

IF 4.9 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Gexin Wang, Jianyang Li, Yan Liu, Kunyan Wang, Luquan Ren, Qingping Liu, Lei Ren, Bingqian Li
{"title":"3D Printed Gear-Based Quasi-Zero Stiffness Vibration Isolation Metastructure","authors":"Gexin Wang,&nbsp;Jianyang Li,&nbsp;Yan Liu,&nbsp;Kunyan Wang,&nbsp;Luquan Ren,&nbsp;Qingping Liu,&nbsp;Lei Ren,&nbsp;Bingqian Li","doi":"10.1007/s42235-025-00659-y","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional linear vibration isolators struggle to combine high load-bearing capacity with low-frequency vibration isolation, whereas nonlinear metastructure isolators can effectively fulfill both functions. This paper draws inspiration from the Quasi-Zero Stiffness (QZS) characteristics resulting from the buckling deformation of beams, and proposes a gear-based QZS structure by arranging beams in a circular array. We investigated the static mechanical behavior under different structural parameters, loading angles, and gear combinations through experiments and simulations, and demonstrated the mechanical performances could be effectively programmed. Subsequent vibration isolation tests on the double gears prove superior vibration isolation performance at low frequency while maintaining high load-bearing capacities. Additionally, a key contribution of our work is the development of a mathematical model to characterize the buckling behavior of the unit beam within the gear structure, with its accuracy validated through finite element analysis and experimental results. The gear’s modulus, number of teeth, and pressure angle are selected according to standard series, allowing the gear can be seamlessly integrated into existing mechanical systems in critical fields such as aerospace, military, and etc.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"767 - 782"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-025-00659-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional linear vibration isolators struggle to combine high load-bearing capacity with low-frequency vibration isolation, whereas nonlinear metastructure isolators can effectively fulfill both functions. This paper draws inspiration from the Quasi-Zero Stiffness (QZS) characteristics resulting from the buckling deformation of beams, and proposes a gear-based QZS structure by arranging beams in a circular array. We investigated the static mechanical behavior under different structural parameters, loading angles, and gear combinations through experiments and simulations, and demonstrated the mechanical performances could be effectively programmed. Subsequent vibration isolation tests on the double gears prove superior vibration isolation performance at low frequency while maintaining high load-bearing capacities. Additionally, a key contribution of our work is the development of a mathematical model to characterize the buckling behavior of the unit beam within the gear structure, with its accuracy validated through finite element analysis and experimental results. The gear’s modulus, number of teeth, and pressure angle are selected according to standard series, allowing the gear can be seamlessly integrated into existing mechanical systems in critical fields such as aerospace, military, and etc.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信