{"title":"Liquid Density Measurement in High-Pressure Region Using Quartz Crystal Resonators","authors":"Hiroshi Yamawaki","doi":"10.1007/s10765-024-03387-3","DOIUrl":"10.1007/s10765-024-03387-3","url":null,"abstract":"<div><p>Numerous attempts have been made to measure the viscosity of liquids under high pressure by analyzing the response of a quartz crystal resonator. However, because the response of the resonator yields the product of density and viscosity, separating each value is necessary. A procedure was devised to measure the density changes of a liquid under high pressure by considering the fact that the response of a TiO<sub>2</sub>-coated quartz crystal resonator is correlated with density. The resonance frequency shift of the TiO<sub>2</sub>-coated quartz crystal resonator is the sum of terms that depend on <span>(rho )</span> and <span>(sqrt{eta rho })</span>. Each effect can be separated using plane equation fitting. By applying ethyl laurate, densities up to 300 MPa were obtained at 313 K and 333 K. These values agreed with previously reported values within ± 1 %, thereby demonstrating the effectiveness of this method. Since the pressure dependence of <span>(sqrt{eta rho })</span> is also obtained in the process of obtaining density data, the pressure dependence of the viscosity <span>(eta )</span> can be estimated. The viscosities of ethyl laurate at 313 K and 333 K were calculated. Although the viscosity values differed significantly from the reported values and the measurements are still inaccurate, the possibility of using this method as a density measurement method under high pressure was demonstrated. Therefore, this study introduces a method with the potential to conveniently measure high-pressure physical properties.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 6","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mat Santamouris, Hassan Saeed Khan, Riccardo Paolini, Olivia Marie Lucie Julia, Samira Garshasbi, Ioannis Papakonstantinou, Jan Valenta
{"title":"Recent Advances in Fluorescence-Based Colored Passive Daytime Radiative Cooling for Heat Mitigation","authors":"Mat Santamouris, Hassan Saeed Khan, Riccardo Paolini, Olivia Marie Lucie Julia, Samira Garshasbi, Ioannis Papakonstantinou, Jan Valenta","doi":"10.1007/s10765-024-03382-8","DOIUrl":"10.1007/s10765-024-03382-8","url":null,"abstract":"<div><p>Passive daytime radiative coolers (PDRCs) with exceptionally high solar reflectance and emissivity in the atmospheric window can provide sub-ambient cooling while reducing buildings’ cooling energy demand. However, glare and esthetic issues limit their application to high-rise buildings while may increase the building’s heating energy needs. Passive colored radiative coolers (PCRCs), based on fluorescent materials, convert part of the absorbed UV and visible solar radiation into emitted light, providing color and reducing the thermal balance of the materials and the potential visual annoyance. This article investigates the state of the art on the PCRC based on fluorescent technologies. Seven articles presenting different combinations of PDRC technologies with fluorescent components to create PCRCs of various colors are presented and analyzed in detail. Quantum dots and phosphors embedded in polymer matrices and combined with reflecting and emitting layers were used as the fluorescent layer of the seven developed green, red, yellow, and yellow–green films. The proposed PCRCs are characterized by very significant differences in cooling performance, although most presented sub-ambient surface temperatures. Their cooling potential is comparatively investigated in terms of the testing climatic conditions and their optical characteristics. The potential increase of their surface temperature, caused by the addition of the fluorescent component, is analyzed through comparisons between the proposed PCRCs and the corresponding white PDRCs without the fluorescent component. The average temperature difference of the green, red, yellow, and yellow–green films against the reference PDRCs is found to be 0.66 °C, 2.6 °C, 1.7 °C and 1.4 °C, respectively. A relevant decreasing trend, but not statistically significant, is observed between the temperature increase caused by the fluorescent additives and the corresponding photoluminescence quantum yield.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 6","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and Predicted Densities and Refractive Indices of the Ternary Mixtures (Glycerol + Water + Methanol), (Glycerol + Water + Ethanol) and (Glycerol + Water + 2-Propanol) at Different Temperatures and Ambient Pressure","authors":"Fouzia Amireche, Yasmine Chabouni, Ariel Hernández","doi":"10.1007/s10765-024-03381-9","DOIUrl":"10.1007/s10765-024-03381-9","url":null,"abstract":"<div><p>Densities and refractive indices of the three following ternary mixtures (glycerol + water + methanol), (glycerol + water + ethanol) or (glycerol + water + 2-propanol) and the corresponding binary mixtures were measured over the entire composition range at three temperatures from 298.15 to 318.15 K and atmospheric pressure. Excess molar volumes,<span>({V}_{123}^{E})</span>, and changes of refractive index on mixing,<span>(Delta{n}_{D, 123})</span>, for the ternary systems were calculated and compared with the results obtained with some semi-empirical methods for the estimation of ternary properties from binary results. Furthermore, Perturbed Chain Statistical Associating Fluid Theory was applied to model the density for the binary and ternary mixtures. On the other hand, four mixing rules (Lorentz–Lorenz, Gladstone–Dale, Laplace, and Eykman) were used to compute predictively the refractive index of the mixtures. The fitting parameters of all equations and their respective standard deviations are reported and the results are discussed in terms of molecular interactions.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 6","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermodynamic Properties and Equations of State for Solid and Liquid Magnesium","authors":"Nikolay V. Kozyrev","doi":"10.1007/s10765-024-03385-5","DOIUrl":"10.1007/s10765-024-03385-5","url":null,"abstract":"<div><p>High-temperature equations of state (EoSs) for solid magnesium with hexagonal close-packing (hcp) and for liquid magnesium were formulated herein by using experimental data on the thermodynamic properties, thermal expansion, compressibility, temperature-dependent bulk compression modulus, and melting curve. The totality of experimental data was co-optimized using the temperature-dependent Tait EoS over a pressure range of 0–500 kbar at temperatures of 20–923 K for solid Mg and at 923–2000 K for liquid Mg. The temperature dependence of thermodynamic and thermophysical parameters was described by the extended Einstein model. The resultant EoSs give a good fit to the whole set of experimental data within measurement errors of individual quantities. The high prediction accuracy was achieved by estimating the thermodynamic and thermophysical properties of solid Mg. For liquid Mg, the suggested model adequately describes and, in some cases, averages the existing experimental data.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 6","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofia G. Sotiriadou, Eleftheria Ntonti, Marc J. Assael, Richard A. Perkins, Marcia L. Huber
{"title":"Reference Correlation of the Viscosity of Ethene from the Triple Point to 450 K and up to 195 MPa","authors":"Sofia G. Sotiriadou, Eleftheria Ntonti, Marc J. Assael, Richard A. Perkins, Marcia L. Huber","doi":"10.1007/s10765-024-03378-4","DOIUrl":"10.1007/s10765-024-03378-4","url":null,"abstract":"<div><p>We present a new wide-range correlation for the viscosity of ethene based on critically evaluated experimental data. The viscosity correlation is valid from the triple point to 450 K and up to 195 MPa. The average absolute percentage deviation of the fit for the primary data (including the critical region) is 1%, with a bias of 0.2%, The estimated uncertainty of the correlation in the gas and supercritical phases at pressures up to 195 MPa is 2.5% (at the 95% confidence level). For the dilute gas (pressures up to 0.1 MPa) in the temperature range 296 K to 450 K, the uncertainty is 0.5%. For the liquid phase at pressures up to 5.5 MPa the estimated uncertainty is 5.3%. The correlation includes a term for the critical enhancement that is significant only in a very narrow region very close to the critical point. It is less than 1% outside of the region around the critical point from 279.80 K ≤ <i>T</i> ≤ 290.27 K to 140.79 kg⋅m<sup>−3</sup> ≤ <i>ρ</i> ≤ 293.08 kg⋅m<sup>−3</sup>.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 6","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developing a Novel Hybrid Nanofluid Preparation Method Using the Droplet Generation Method: Predicting the Thermal Conductivity, Viscosity, and Magnetic Properties Compared to the Conventional Two-Step Method","authors":"Dianzuo Li, Sayed Hamidreza Hejazi Dehaghani, Arash Karimipour","doi":"10.1007/s10765-024-03368-6","DOIUrl":"10.1007/s10765-024-03368-6","url":null,"abstract":"<div><p>This study focuses on utilizing a novel method, the droplet generation method (DGM), to prepare hybrid nanofluids. The aim is to compare thermophysical properties, including thermal conductivity (TC) and viscosity, and magnetic properties between the DGM and two-step method (TSM). To prepare a bio-nanofluid, both fluid and nanoparticles must be biocompatible. Therefore, simulated body fluid (SBF) and olive oil were used to prepare this hybrid bio-nanofluid, and for the magnetic particle, iron oxide (Fe<sub>3</sub>O<sub>4</sub>) was used. Phase and microstructural examinations were conducted using XRD, FTIR, and FE-SEM. The KD2 Pro and DV2 Pro devices were employed to measure the thermal conductivity and viscosity of the samples, respectively. For both samples prepared using DGM and TSM, different volume fractions ranging from 0.01% to 1.00% and temperatures varying from 20°C to 40°C were measured individually. In TSM, from 20°C to 40°C, for 0.10% and 1.00% v.v, TC increased by 6.31% and 10.14%, respectively, while in DGM, it decreased by 0.48% and 1.23%, respectively. At a shear rate of 12.23 s<sup>−1</sup>, from 20°C to 40°C, for 0.10% and 1.00% v.v, in the TSM, the viscosity decreased by 31.39% and 34.99%, respectively, while in DGM, it decreased by 25.11% and 28.83%, respectively. At a shear rate of 122.3 s<sup>−1</sup>, from 20°C to 40°C, for 0.10% and 1.00% v.v, in the TSM, the viscosity decreased by 22.92% and 29.25%, respectively, while in DGM, it decreased by 17.42% and 23.85%, respectively. The results of this study contribute to understanding the effect of DGM on altering thermophysical properties of bio-nanofluids.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 6","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141123297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: Thermodynamic Properties and Equation of State for Alpha-Alumina","authors":"Nikolay V. Kozyrev","doi":"10.1007/s10765-024-03365-9","DOIUrl":"10.1007/s10765-024-03365-9","url":null,"abstract":"","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 6","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141121104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiang Zheng, Fuxin Yang, Houzhang Tan, Xiaopo Wang
{"title":"Investigation on the Characteristics of Tetrabutylammonium Chloride Based Deep Eutectic Solvent Aqueous Solution","authors":"Qiang Zheng, Fuxin Yang, Houzhang Tan, Xiaopo Wang","doi":"10.1007/s10765-024-03374-8","DOIUrl":"10.1007/s10765-024-03374-8","url":null,"abstract":"<div><p>Deep eutectic solvents (DES) have attracted more attention due to the excellent performance and environmental protection. In the study and application of DES, the presence of water cannot be ignored. Thus, it is of importance to study the effect of water on DES. In this work, tetrabutylammonium chloride (TBAC) was chosen as the hydrogen bond acceptor (HBA). Decanoic acid (DEC) and octanoic acid (OC) were chosen as the hydrogen bond donor (HBD). Then, two kinds of DES were prepared with the mole ratio of 1:2 for HBA:HBD. The water was added into the sample to form the mixing system. The properties of these DES and their aqueous solutions were analyzed. The thermogravimetric (TG) experiment was conducted to obtain the TG curves for the thermal stability evaluation. The data of density and viscosity for (1 − <i>x</i>)DES–<i>x</i>H<sub>2</sub>O (<i>x</i> represents the molar fractions of H<sub>2</sub>O) were measured at the temperatures ranging from 303.15 K to 343.15 K. Furthermore, the hard sphere model was introduced for the predictions of viscosity with the average absolute relative deviation for the pure DES and their aqueous solution less than 2.71 % and 7.65 %, respectively. It indicates the fine prediction of these models. Moreover, the excess molar volume, the viscosity deviation and the excess molar Gibbs energy of activation were calculated for the further analysis of the interactions between DES and water.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 6","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141119434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization, Preparation and Thermophysical Properties Investigations of Aqueous AgNO3–Graphene Hybrid Nanofluids for Heat Transfer Applications","authors":"Azharuddin, Prashant Saini","doi":"10.1007/s10765-024-03377-5","DOIUrl":"10.1007/s10765-024-03377-5","url":null,"abstract":"<div><p>The comprehensive characterization of AgNO<sub>3</sub>/graphene nanoparticles, preparation of their hybrid nanofluids and important thermophysical properties investigations have not been done so far to identify their potential application in heat transfer. Hence, current study attempts to characterize AgNO<sub>3</sub> and graphene nanoparticles by employing SEM, X-ray diffraction and FT-IR spectrum. Various concentrations of AgNO<sub>3</sub>–graphene/water hybrid nanofluids (HNFs) are prepared. Two-step preparation process for HNFs involve magnetic stirring followed by probe sonication. Further, HNFs are characterized by particle size analysis and UV-spectroscopy. Additionally, thermal conductivity, specific heat, viscosity and density of HNFs are investigated experimentally with varying temperature ranges 25 °C to 75 °C and concentration ranges 0.01 vol % to 0.03 vol %. AgNO<sub>3</sub> and graphene structures peak are obtained at position 2θ = 35.58° and 2θ = 26.42° respectively and both the NPs features slight narrowing peaks. Experimental results reveal that, thermal conductivity improves with increasing temperature and found enhanced by 8.21 % for 0.01 vol %, 15.37 % for 0.02 vol % and 23.59 % for 0.03 vol % concentration at 75 °C compared to water. Specific heat of the HNFs rises with rising temperature whereas at a particular temperature it decreases with increasing NPs concentration. Dynamics viscosity decreases with increasing temperature for all prepared HNFs. The density exhibits no significant variation with the increase in concentration and temperature. Prepared HNFs are recommended as heat transfer fluid in various applications.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 6","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobi Ore, Behzad Ghanbarian, Klaus Bohne, Gerd Wessolek
{"title":"Saturation Dependence of Thermal Conductivity of Soils: Classification and Estimations","authors":"Tobi Ore, Behzad Ghanbarian, Klaus Bohne, Gerd Wessolek","doi":"10.1007/s10765-024-03375-7","DOIUrl":"10.1007/s10765-024-03375-7","url":null,"abstract":"<div><p>Thermal conductivity is a key parameter governing heat transfer in rocks and soils with applications to geothermal systems and groundwater studies. Its accurate measurement is crucial to understand energy exchange in the Earth's subsurface. This study explores the application of the percolation-based effective-medium approximation (P-EMA) model to a broad range of soil types using a database including 158 soil samples. The P-EMA model for soil thermal conductivity, introduced by Ghanbarian and Daigle, is validated through robust optimization of its parameters and by comparing with the laboratory measurements where we find an excellent match between the theory and the experiments. A regression-based model is developed to estimate the P-EMA model parameters directly from other soil properties, such as sand, clay, bulk density, and thermal conductivities at completely dry and full saturation. The proposed regression-based relationships are evaluated using unseen data from two databases: one from Kansas containing 19 soil samples and another from Canada containing 40 soil samples. These regression-based relationships offer an approximation for the P-EMA model parameters, providing a practical approach to estimate the thermal conductivity of soils. Furthermore, a curve-clustering approach is proposed to classify soil thermal conductivity curves based on their similarities, providing insights into the heterogeneity of samples. We find seven clusters for each of which the average P-EMA model parameters are reported. The classification and regression models generally extend the seamless applicability of the P-EMA model.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 6","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140969905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}