Thermal Properties of Novel Hybrid Phase Change Materials Based on LiNO3–NaNO3–NaCl/NiCrO3–Sand for Heat Storage

IF 2.9 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Muhammad Shehram, Muhammad Najwan Hamidi, Aeizaal Azman Abdul Wahab, Mohd Khairunaz Mat Desa
{"title":"Thermal Properties of Novel Hybrid Phase Change Materials Based on LiNO3–NaNO3–NaCl/NiCrO3–Sand for Heat Storage","authors":"Muhammad Shehram,&nbsp;Muhammad Najwan Hamidi,&nbsp;Aeizaal Azman Abdul Wahab,&nbsp;Mohd Khairunaz Mat Desa","doi":"10.1007/s10765-025-03566-w","DOIUrl":null,"url":null,"abstract":"<div><p>Phase change materials (PCMs) are effective for thermal energy storage but often suffer from low thermal conductivity and limited stability. To overcome these challenges and enhance PCM performance, conductive materials can be added. This study presents a novel composite phase change material (CPCM) by combining LiNO<sub>3</sub>–NaNO<sub>3</sub>–NaCl with sand and NiCrO<sub>3</sub> in an 8:2 wt % ratio, significantly improving thermal conductivity and stability. Thermal and chemical analyses reveal that the addition of sand–NiCrO<sub>3</sub> increases the CPCM’s thermal conductivity from 0.50 W/m·K to 0.92 W/m·K, enhancing charging and discharging efficiency. Structural analysis shows well-organized sand particles spaced 44.38 µm apart, with bright spots indicating NiCrO<sub>3</sub>. The CPCM undergoes a solid–solid phase transition at 50 °C, a phase change at 130 °C, and solidification at 125 °C. It retains good thermal stability, with degradation starting after 300 cycles, showing only 27 % mass loss at 650 °C and a 2 % reduction in storage capacity. The CPCM’s latent and specific heat capacities are 250 J·g<sup>−1</sup> and 565 J·kg<sup>−1</sup>·°C, respectively, enabling effective heat storage with minimal temperature variation and reduced heat loss. Its exergy efficiency of 0.90 % during heat storage in a tank highlights its strong thermal energy storage capabilities, making it a promising material for advanced applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-025-03566-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Phase change materials (PCMs) are effective for thermal energy storage but often suffer from low thermal conductivity and limited stability. To overcome these challenges and enhance PCM performance, conductive materials can be added. This study presents a novel composite phase change material (CPCM) by combining LiNO3–NaNO3–NaCl with sand and NiCrO3 in an 8:2 wt % ratio, significantly improving thermal conductivity and stability. Thermal and chemical analyses reveal that the addition of sand–NiCrO3 increases the CPCM’s thermal conductivity from 0.50 W/m·K to 0.92 W/m·K, enhancing charging and discharging efficiency. Structural analysis shows well-organized sand particles spaced 44.38 µm apart, with bright spots indicating NiCrO3. The CPCM undergoes a solid–solid phase transition at 50 °C, a phase change at 130 °C, and solidification at 125 °C. It retains good thermal stability, with degradation starting after 300 cycles, showing only 27 % mass loss at 650 °C and a 2 % reduction in storage capacity. The CPCM’s latent and specific heat capacities are 250 J·g−1 and 565 J·kg−1·°C, respectively, enabling effective heat storage with minimal temperature variation and reduced heat loss. Its exergy efficiency of 0.90 % during heat storage in a tank highlights its strong thermal energy storage capabilities, making it a promising material for advanced applications.

Graphical Abstract

基于LiNO3-NaNO3-NaCl / NiCrO3-Sand的新型储热杂化相变材料的热性能
相变材料是一种有效的储热材料,但其导热系数低,稳定性有限。为了克服这些挑战并提高PCM性能,可以添加导电材料。本研究提出了一种新型复合相变材料(CPCM),将LiNO3-NaNO3-NaCl与沙子和NiCrO3以8:2 wt %的比例组合,显著提高了导热性和稳定性。热分析和化学分析表明,nicro3砂的加入使CPCM的导热系数从0.50 W/m·K提高到0.92 W/m·K,提高了充放电效率。结构分析表明,砂粒组织良好,间距为44.38µm,亮点为NiCrO3。CPCM在50℃时发生固固相变,在130℃时发生相变,在125℃时发生凝固。它保持了良好的热稳定性,300次循环后开始降解,在650°C时仅损失27%的质量,存储容量减少2%。CPCM的潜热容和比热容分别为250 J·g−1和565 J·kg−1·°C,能够在最小温度变化和减少热损失的情况下有效储热。在储热过程中,其0.90%的火用效率突出了其强大的储热能力,使其成为一种有前途的先进应用材料。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信