The First Step into Material Table Dataset for Surface Tension of Nanofluids: Insights from the Case Study of Ethylene Glycol-Based Graphene Nanofluids

IF 2.9 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Julian Traciak, Krzysztof Koziol, Magdalena Małecka, Anna Blacha, Sławomir Boncel, Gaweł Żyła
{"title":"The First Step into Material Table Dataset for Surface Tension of Nanofluids: Insights from the Case Study of Ethylene Glycol-Based Graphene Nanofluids","authors":"Julian Traciak,&nbsp;Krzysztof Koziol,&nbsp;Magdalena Małecka,&nbsp;Anna Blacha,&nbsp;Sławomir Boncel,&nbsp;Gaweł Żyła","doi":"10.1007/s10765-025-03553-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the density and surface tension properties of graphene flake-ethylene glycol (GF-EG) nanofluids. The experimental results demonstrate that the density of GF-EG nanofluids increases with nanoparticle mass fractions while exhibiting a linear decrease with temperature. Surface tension measurements reveal a consistent reduction compared to pure ethylene glycol, aligning with a previously established model that attributes this behavior to nanoparticle saturation at the fluid surface. Notably, the averaged surface tension values for GF-EG nanofluids at 298.15 K were determined to be 47.906 mN <span>\\(\\cdot {\\rm m}^{-1}\\)</span>. A key contribution of this work is the introduction of the concept of a material data table for nanofluids, which aims to consolidate fragmented experimental data into a standardized framework. Such a dataset would enable more accurate prediction of surface tension behavior in different nanofluid systems and facilitate advances in artificial intelligence-based modeling that can identify correlations between nanoparticle characteristics and surface tension, enabling rapid optimization of nanofluids for specific applications. This study not only provides new insights into GF-EG nanofluids in terms of surface tension, but also highlights the transformative potential of artificial intelligence in accelerating the discovery and implementation of next-generation heat transfer fluids.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-025-03553-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the density and surface tension properties of graphene flake-ethylene glycol (GF-EG) nanofluids. The experimental results demonstrate that the density of GF-EG nanofluids increases with nanoparticle mass fractions while exhibiting a linear decrease with temperature. Surface tension measurements reveal a consistent reduction compared to pure ethylene glycol, aligning with a previously established model that attributes this behavior to nanoparticle saturation at the fluid surface. Notably, the averaged surface tension values for GF-EG nanofluids at 298.15 K were determined to be 47.906 mN \(\cdot {\rm m}^{-1}\). A key contribution of this work is the introduction of the concept of a material data table for nanofluids, which aims to consolidate fragmented experimental data into a standardized framework. Such a dataset would enable more accurate prediction of surface tension behavior in different nanofluid systems and facilitate advances in artificial intelligence-based modeling that can identify correlations between nanoparticle characteristics and surface tension, enabling rapid optimization of nanofluids for specific applications. This study not only provides new insights into GF-EG nanofluids in terms of surface tension, but also highlights the transformative potential of artificial intelligence in accelerating the discovery and implementation of next-generation heat transfer fluids.

Abstract Image

进入纳米流体表面张力材料表数据集的第一步:来自乙二醇基石墨烯纳米流体案例研究的见解
本研究研究了石墨烯片状乙二醇(GF-EG)纳米流体的密度和表面张力特性。实验结果表明,GF-EG纳米流体的密度随纳米颗粒质量分数的增加而增加,随温度的升高而线性降低。表面张力测量显示,与纯乙二醇相比,乙二醇的表面张力持续降低,这与先前建立的模型一致,该模型将这种行为归因于流体表面纳米颗粒的饱和。值得注意的是,GF-EG纳米流体在298.15 K下的平均表面张力值为47.906 mN \(\cdot {\rm m}^{-1}\)。这项工作的一个关键贡献是引入了纳米流体材料数据表的概念,其目的是将分散的实验数据整合到一个标准化框架中。这样的数据集将能够更准确地预测不同纳米流体系统中的表面张力行为,并促进基于人工智能的建模的进步,该建模可以识别纳米颗粒特性与表面张力之间的相关性,从而实现针对特定应用的纳米流体的快速优化。这项研究不仅在表面张力方面为GF-EG纳米流体提供了新的见解,而且还突出了人工智能在加速发现和实施下一代传热流体方面的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信