The First Step into Material Table Dataset for Surface Tension of Nanofluids: Insights from the Case Study of Ethylene Glycol-Based Graphene Nanofluids
Julian Traciak, Krzysztof Koziol, Magdalena Małecka, Anna Blacha, Sławomir Boncel, Gaweł Żyła
{"title":"The First Step into Material Table Dataset for Surface Tension of Nanofluids: Insights from the Case Study of Ethylene Glycol-Based Graphene Nanofluids","authors":"Julian Traciak, Krzysztof Koziol, Magdalena Małecka, Anna Blacha, Sławomir Boncel, Gaweł Żyła","doi":"10.1007/s10765-025-03553-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the density and surface tension properties of graphene flake-ethylene glycol (GF-EG) nanofluids. The experimental results demonstrate that the density of GF-EG nanofluids increases with nanoparticle mass fractions while exhibiting a linear decrease with temperature. Surface tension measurements reveal a consistent reduction compared to pure ethylene glycol, aligning with a previously established model that attributes this behavior to nanoparticle saturation at the fluid surface. Notably, the averaged surface tension values for GF-EG nanofluids at 298.15 K were determined to be 47.906 mN <span>\\(\\cdot {\\rm m}^{-1}\\)</span>. A key contribution of this work is the introduction of the concept of a material data table for nanofluids, which aims to consolidate fragmented experimental data into a standardized framework. Such a dataset would enable more accurate prediction of surface tension behavior in different nanofluid systems and facilitate advances in artificial intelligence-based modeling that can identify correlations between nanoparticle characteristics and surface tension, enabling rapid optimization of nanofluids for specific applications. This study not only provides new insights into GF-EG nanofluids in terms of surface tension, but also highlights the transformative potential of artificial intelligence in accelerating the discovery and implementation of next-generation heat transfer fluids.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-025-03553-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the density and surface tension properties of graphene flake-ethylene glycol (GF-EG) nanofluids. The experimental results demonstrate that the density of GF-EG nanofluids increases with nanoparticle mass fractions while exhibiting a linear decrease with temperature. Surface tension measurements reveal a consistent reduction compared to pure ethylene glycol, aligning with a previously established model that attributes this behavior to nanoparticle saturation at the fluid surface. Notably, the averaged surface tension values for GF-EG nanofluids at 298.15 K were determined to be 47.906 mN \(\cdot {\rm m}^{-1}\). A key contribution of this work is the introduction of the concept of a material data table for nanofluids, which aims to consolidate fragmented experimental data into a standardized framework. Such a dataset would enable more accurate prediction of surface tension behavior in different nanofluid systems and facilitate advances in artificial intelligence-based modeling that can identify correlations between nanoparticle characteristics and surface tension, enabling rapid optimization of nanofluids for specific applications. This study not only provides new insights into GF-EG nanofluids in terms of surface tension, but also highlights the transformative potential of artificial intelligence in accelerating the discovery and implementation of next-generation heat transfer fluids.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.