S. S. Kakati, T. M. Makandar, M. K. Rendale, S. N. Mathad
{"title":"Green Synthesis Approach for Nanosized Cobalt Doped Mg–Zn through Citrus Lemon Mediated Sol–Gel Auto Combustion Method","authors":"S. S. Kakati, T. M. Makandar, M. K. Rendale, S. N. Mathad","doi":"10.3103/S1061386222030049","DOIUrl":"10.3103/S1061386222030049","url":null,"abstract":"<p>Cobalt doped Mg–Zn ferrite (Mg<sub>(0.56)</sub>Co<sub>(0.14)</sub>Zn<sub>(0.30)</sub>Fe<sub>2</sub>O<sub>4</sub>) was synthesized by the modified sol–gel auto combustion method (MSG) in which lemon extracts were used as the source of energy. X-ray diffraction (XRD) technique was employed to confirm the formation of cubic spinel ferrite phase. The lattice parameter was evaluated to be 8.39 Å with an average crystallite size ranging from 41–51 nm. Dislocation density, mechanical properties, and hopping length were determined. Crystallite size and strain were evaluated using W–H plot and size–strain plot.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 3","pages":"131 - 137"},"PeriodicalIF":0.6,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4634415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Asgharzadeh, H. Sharifi, M. Tayyebi, T. Esfahani
{"title":"Mechanochemical Synthesis of Ni–Cr3C2 Nanocomposite","authors":"S. Asgharzadeh, H. Sharifi, M. Tayyebi, T. Esfahani","doi":"10.3103/S1061386222030025","DOIUrl":"10.3103/S1061386222030025","url":null,"abstract":"<p>The aim of this research is to synthesize Ni–Cr<sub>3</sub>C<sub>2</sub> nanocomposite powder by mechanochemical method at low temperature from initial powder oxides of NiO and Cr<sub>2</sub>O<sub>3</sub>. In this study, magnesium was added for the reduction of the oxide material and graphite was used for carbidification. According to the calculation of the adiabatic temperature it was found that the synthesis of the Cr<sub>3</sub>C<sub>2</sub> was self propagating. The mechanochemical process was done in a high energy planetary ball mill with a ball-to-powder weight ratio of 1 : 20. XRD analysis was used for phase determination. The results showed that the Ni–Cr<sub>3</sub>C<sub>2</sub> composite was gradually synthesized after 3 h milling and the synthesized products obtained during the milling process were Cr<sub>3</sub>C<sub>2</sub>, Ni, and MgO. Furthermore, it was seen that the addition of 10% excess Mg to the powder mixture changed the reaction from gradual stage to combustion. The morphological studies using FESEM showed that the composite powder had a semi-spherical morphology. XRD patterns and elemental map images showed that after the acid leaching process, MgO was completely removed. The study on the particle size of the composite powder by TEM showed that the size of particles was around 55 nm.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 3","pages":"144 - 153"},"PeriodicalIF":0.6,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4634420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combustion of Ti + C4H6O4 Powder Mixture in Argon: Coflow Effect","authors":"A. G. Tarasov, I. A. Studenikin","doi":"10.3103/S1061386222030086","DOIUrl":"10.3103/S1061386222030086","url":null,"abstract":"","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 3","pages":"154 - 157"},"PeriodicalIF":0.6,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4631110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Influence of Ammonium Nitrate/Urea Ratio on the Reaction Process and Structure of Formed Alumina–Mullite Composite","authors":"E. Feizabadi, A. Meysami, M. Hajisafari","doi":"10.3103/S1061386222030037","DOIUrl":"10.3103/S1061386222030037","url":null,"abstract":"<p>In this study, the initial materials including aluminum nitrate nonahydrate and silicon powder were used to produce alumina–mullite composite through solution combustion synthesis (SCS). This paper aimed to investigate the influence of ammonium nitrate added as co-fuel to urea on the formation of alumina–mullite. For this purpose, ammonium nitrate/urea ratios of 0, 0.2, 0.4 and 0.5 were used for SCS. It was revealed through thermo-chemical calculations that increasing this ratio enhances the adiabatic temperature of combustion and facilitates the formation of crystalline mullite that is confirmed by structural analysis. XRD patterns showed that with increasing ammonium nitrate/urea ratio, the mullite peaks are intensified, and its trend is into the crystalline structure. Hence the mullite volume fraction increased from 4.12 to 30.52%. SEM studies showed that this ratio decreases a mean particles size from 264 to 133 nm.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 3","pages":"121 - 130"},"PeriodicalIF":0.6,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4634406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SHS in the Ni–Al–Mn System: Influence of Mechanical Activation","authors":"N. A. Kochetov","doi":"10.3103/S1061386222030050","DOIUrl":"10.3103/S1061386222030050","url":null,"abstract":"<p>The influence of mechanical activation and amount of added Mn on SHS process in the ternary Ni–Al–Mn system was studied. Dependences of maximum combustion temperature, burning velocity, and sample elongation on the Mn concentration for activated and non-activated mixtures were constructed. Phase composition and morphology of combustion products were characterized by XRD and SEM.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 3","pages":"138 - 143"},"PeriodicalIF":0.6,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4632440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discrete 2D Model of Combustion in a Binary Mixture Containing Mechanically Activated and Non-Activated Layers","authors":"O. V. Lapshin, V. G. Prokof’ev","doi":"10.3103/S1061386222030062","DOIUrl":"10.3103/S1061386222030062","url":null,"abstract":"<p>A discrete 2D model of combustion process in donor–acceptor mixture consisting of activated and non-activated reaction cells was proposed. The influence of the activated composition fraction and cell size on the burning velocity of a combined mixture was analyzed. Calculations showed that an increase in the activated composition fraction elevates the average burning velocity. It was found that burning velocity vs cell size dependence passes through a maximum.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 3","pages":"114 - 120"},"PeriodicalIF":0.6,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4632510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermally Coupled SHS Processes: Numerical Modeling","authors":"V. G. Prokof’ev","doi":"10.3103/S1061386222030074","DOIUrl":"10.3103/S1061386222030074","url":null,"abstract":"<p>Unsteady spatial modes of gasless combustion in parallelepiped-shaped sample containing two powder mixtures separated by low-melting inert layer were numerically modelled. Samples with square cross section were found to burn both in stationary and in unsteady periodic modes depending on the thermal conductivity of the inert inner layer. Combustion of sample with an active inner layer in quasi-stationary control modes when the average burning velocities of the donor and acceptor mixtures are the same were studied.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 3","pages":"109 - 113"},"PeriodicalIF":0.6,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4632520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. A. Shcherbakov, A. N. Gryadunov, I. E. Semenchuk, A. E. Sytschev, M. I. Alymov
{"title":"Synthesis of Ultra-High-Temperature Ta4HfC5–HfB2 Composites by Electro-thermal Explosion under Pressure","authors":"V. A. Shcherbakov, A. N. Gryadunov, I. E. Semenchuk, A. E. Sytschev, M. I. Alymov","doi":"10.3103/S1061386222020091","DOIUrl":"10.3103/S1061386222020091","url":null,"abstract":"<p>Ultra-high-temperature Ta<sub>4</sub>HfC<sub>5</sub>–HfB<sub>2</sub> composites were prepared by electrothermal explosion (ETE) under pressure in a one-stage process, with special emphasis on the influence of high-energy ball milling (HEBM) of starting Ta–Hf–C–B powder mixtures. Synthesized Ta<sub>4</sub>HfC<sub>5</sub>–HfB<sub>2</sub> composites had a grain size smaller than 0.2 μm and a porosity of 10–12%. A synthesized composite has high temperature resistance at heating in the flame of an oxygen-acetylene burner.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 2","pages":"57 - 61"},"PeriodicalIF":0.6,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4972345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. A. Lopera, E. A. Chavarriaga, J. A. Perez-Taborda, S. L. Amaya, A. Echavarría, C. García
{"title":"Effect of the Fuel in the Synthesis of NiO–YSZ by Solution Combustion Synthesis with Potential Application in Catalysis of Hydrogen","authors":"A. A. Lopera, E. A. Chavarriaga, J. A. Perez-Taborda, S. L. Amaya, A. Echavarría, C. García","doi":"10.3103/S1061386222020042","DOIUrl":"10.3103/S1061386222020042","url":null,"abstract":"<p>Nanocomposites of nickel oxide/yttria-stabilized zirconia (NiO/YSZ) particles were synthesized via solution combustion synthesis using glycine and urea as fuels in one step. The powders were characterized by X-ray diffraction (XRD) analysis, where the synthesis with urea showed the formation of the NiO/YSZ composite, while the presence of Ni with NiO/YSZ were observed when the glycine was used. The morphology of the as-prepared powders and the presence of Ni were corroborated by field emission scanning electron microscopy and energy dispersive X-ray spectroscopy (FE-SEM; EDX). The powders showed catalytic behavior which was evidenced by H<sub>2</sub>-TPR measurements. These materials could be used for the fabrication of Ni/YSZ anode for fuel cells.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 2","pages":"74 - 79"},"PeriodicalIF":0.6,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4973560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, N. I. Abzalov, D. S. Vasilyev
{"title":"Combustion of 5Ti + 3Si Blends: Impact of Granule Diameter and Ti Particle Size","authors":"B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, N. I. Abzalov, D. S. Vasilyev","doi":"10.3103/S106138622202008X","DOIUrl":"10.3103/S106138622202008X","url":null,"abstract":"<p>This work explains the different ratio of the burning velocities of powder and granulated 5Ti + 3Si mixtures with Ti particles 35 and 120 μm in size due to the influence of impurity gases, which depends on the conditions for heating up the particles ahead of the combustion front. For the first time, the burning velocity inside the granule was obtained using the measured combustion velocities of mixtures of different granule sizes 0.6 ≤ <i>D</i> ≤ 1.7 mm. It turned out to be equal to the velocity of the combustion front in the granulated mixture for fine Ti particles and the velocity of the combustion front in the powder mixture for coarse Ti particles. The difference in the burning rates of the substance of granule and powder mixture serves as a quantitative measure of the influence of impurity gases. The results confirmed the applicability of the developed conditions for heating up the powder components to predict the retarding effect of impurity gases on the synthesis velocity in 5Ti + 3Si powders.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 2","pages":"104 - 107"},"PeriodicalIF":0.6,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4973717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}