{"title":"不同尺寸钛颗粒的钛基混合物燃烧的结构宏观动力学","authors":"B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina","doi":"10.3103/S106138622303010X","DOIUrl":null,"url":null,"abstract":"<p>Experimental dependences of the combustion velocity on the size of titanium particles for powder and granular mixtures of 5Ti + 3Si, Ti + C<sup>am</sup>, (Ti + C<sup>am</sup>) + 20% Cu, (Ti + C<sup>am</sup>) + 20% Ni, Ti + C<sup>cr</sup> (with amorphous carbon in the form of soot and with crystalline carbon in the form of graphite) were compared. The results of experiments were explained by the retarding effect of impurity gases in powder mixtures when the conditions of warming up the particles before the combustion front were met. For all the studied granular mixtures, where the influence of impurity gases on the combustion velocity was leveled, analytical dependences of the combustion velocity on the size of titanium particles were in good agreement with the conclusions of the convective–conductive combustion model.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 3","pages":"233 - 238"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Macrokinetics of Combustion of Ti-Based Mixtures with Titanium Particles of Different Sizes\",\"authors\":\"B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina\",\"doi\":\"10.3103/S106138622303010X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Experimental dependences of the combustion velocity on the size of titanium particles for powder and granular mixtures of 5Ti + 3Si, Ti + C<sup>am</sup>, (Ti + C<sup>am</sup>) + 20% Cu, (Ti + C<sup>am</sup>) + 20% Ni, Ti + C<sup>cr</sup> (with amorphous carbon in the form of soot and with crystalline carbon in the form of graphite) were compared. The results of experiments were explained by the retarding effect of impurity gases in powder mixtures when the conditions of warming up the particles before the combustion front were met. For all the studied granular mixtures, where the influence of impurity gases on the combustion velocity was leveled, analytical dependences of the combustion velocity on the size of titanium particles were in good agreement with the conclusions of the convective–conductive combustion model.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"32 3\",\"pages\":\"233 - 238\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S106138622303010X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S106138622303010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Structural Macrokinetics of Combustion of Ti-Based Mixtures with Titanium Particles of Different Sizes
Experimental dependences of the combustion velocity on the size of titanium particles for powder and granular mixtures of 5Ti + 3Si, Ti + Cam, (Ti + Cam) + 20% Cu, (Ti + Cam) + 20% Ni, Ti + Ccr (with amorphous carbon in the form of soot and with crystalline carbon in the form of graphite) were compared. The results of experiments were explained by the retarding effect of impurity gases in powder mixtures when the conditions of warming up the particles before the combustion front were met. For all the studied granular mixtures, where the influence of impurity gases on the combustion velocity was leveled, analytical dependences of the combustion velocity on the size of titanium particles were in good agreement with the conclusions of the convective–conductive combustion model.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.