Hf/PTFE反应材料的起燃特性

IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
I. V. Saikov, S. A. Seropyan, G. R. Saikova, A. Yu. Malakhov
{"title":"Hf/PTFE反应材料的起燃特性","authors":"I. V. Saikov,&nbsp;S. A. Seropyan,&nbsp;G. R. Saikova,&nbsp;A. Yu. Malakhov","doi":"10.3103/S1061386223030081","DOIUrl":null,"url":null,"abstract":"<p>The optimum composition of components in the Hf/PTFE system was determined by thermodynamic calculation. The composition 65Hf/35PTFE (in wt %) was chosen based on the maximum adiabatic combustion temperature (<i>T</i><sub>ad</sub> = 2381°C) and the fraction of condensed products (70 wt %). The study on the ignition of compositions in argon, air, and vacuum showed that in the latter case, the intensity of ignition decreases. The maximum combustion temperature and rate in argon were found to be 2250°C and 4.5 mm/s for compositions with 10 and 15 wt % Al. XRD analysis revealed the formation of a monophase HfC product in all compositions. Shock-wave loading of compositions with a steel plate at an impact velocity of 1 km/s showed the absence of exothermic reaction in the 65Hf/35PTFE composition. Increasing the impact velocity to 1.5 km/s resulted in an exothermic reaction in this composition. The maximum yield of HfC under shock-wave loading was achieved in the composition 62Hf/33PTFE/5Al, indicating its high reactivity. Thus, this composition is the most optimal for use as a reactive material.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 3","pages":"200 - 207"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Features of Initiation and Combustion of Hf/PTFE Reactive Materials\",\"authors\":\"I. V. Saikov,&nbsp;S. A. Seropyan,&nbsp;G. R. Saikova,&nbsp;A. Yu. Malakhov\",\"doi\":\"10.3103/S1061386223030081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The optimum composition of components in the Hf/PTFE system was determined by thermodynamic calculation. The composition 65Hf/35PTFE (in wt %) was chosen based on the maximum adiabatic combustion temperature (<i>T</i><sub>ad</sub> = 2381°C) and the fraction of condensed products (70 wt %). The study on the ignition of compositions in argon, air, and vacuum showed that in the latter case, the intensity of ignition decreases. The maximum combustion temperature and rate in argon were found to be 2250°C and 4.5 mm/s for compositions with 10 and 15 wt % Al. XRD analysis revealed the formation of a monophase HfC product in all compositions. Shock-wave loading of compositions with a steel plate at an impact velocity of 1 km/s showed the absence of exothermic reaction in the 65Hf/35PTFE composition. Increasing the impact velocity to 1.5 km/s resulted in an exothermic reaction in this composition. The maximum yield of HfC under shock-wave loading was achieved in the composition 62Hf/33PTFE/5Al, indicating its high reactivity. Thus, this composition is the most optimal for use as a reactive material.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"32 3\",\"pages\":\"200 - 207\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386223030081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386223030081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过热力学计算确定了Hf/PTFE体系中各组分的最佳组成。根据最高绝热燃烧温度(Tad = 2381℃)和缩合产物分数(70 wt %)选择了65Hf/35PTFE (wt %)组成。对化学成分在氩气、空气和真空中着火的研究表明,在真空中,着火强度降低。Al质量分数为10%和15%时,在氩气中的最高燃烧温度为2250℃,燃烧速率为4.5 mm/s。XRD分析表明,所有成分均形成了单相HfC产物。在冲击速度为1 km/s时,用钢板对组合物进行冲击波加载,结果表明65Hf/35PTFE组合物没有发生放热反应。将撞击速度提高到1.5 km/s会导致该成分发生放热反应。62Hf/33PTFE/5Al组合物在激波载荷下的HfC产率最高,表明其具有较高的反应活性。因此,该组合物最适合用作反应材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Features of Initiation and Combustion of Hf/PTFE Reactive Materials

Features of Initiation and Combustion of Hf/PTFE Reactive Materials

The optimum composition of components in the Hf/PTFE system was determined by thermodynamic calculation. The composition 65Hf/35PTFE (in wt %) was chosen based on the maximum adiabatic combustion temperature (Tad = 2381°C) and the fraction of condensed products (70 wt %). The study on the ignition of compositions in argon, air, and vacuum showed that in the latter case, the intensity of ignition decreases. The maximum combustion temperature and rate in argon were found to be 2250°C and 4.5 mm/s for compositions with 10 and 15 wt % Al. XRD analysis revealed the formation of a monophase HfC product in all compositions. Shock-wave loading of compositions with a steel plate at an impact velocity of 1 km/s showed the absence of exothermic reaction in the 65Hf/35PTFE composition. Increasing the impact velocity to 1.5 km/s resulted in an exothermic reaction in this composition. The maximum yield of HfC under shock-wave loading was achieved in the composition 62Hf/33PTFE/5Al, indicating its high reactivity. Thus, this composition is the most optimal for use as a reactive material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
33.30%
发文量
27
期刊介绍: International Journal of Self-Propagating High-Temperature Synthesis  is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信