International Journal of Self-Propagating High-Temperature Synthesis最新文献

筛选
英文 中文
Preparation of Ti3SiC2–Sn(Pb) Cermet by SHS of Ti3SiC2 Porous Skeleton with Subsequent Spontaneous Infiltration with Sn–Pb Melt Ti3SiC2多孔骨架的SHS法制备Ti3SiC2 - sn (Pb)金属陶瓷
IF 0.6
International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-04-05 DOI: 10.3103/S1061386223010089
E. R. Umerov, E. I. Latukhin, A. P. Amosov, P. E. Kichaev
{"title":"Preparation of Ti3SiC2–Sn(Pb) Cermet by SHS of Ti3SiC2 Porous Skeleton with Subsequent Spontaneous Infiltration with Sn–Pb Melt","authors":"E. R. Umerov,&nbsp;E. I. Latukhin,&nbsp;A. P. Amosov,&nbsp;P. E. Kichaev","doi":"10.3103/S1061386223010089","DOIUrl":"10.3103/S1061386223010089","url":null,"abstract":"<p>Ti<sub>3</sub>SiC<sub>2</sub>–Sn(Pb) cermet was produced by a new method combining SHS of porous Ti<sub>3</sub>SiC<sub>2</sub> skeleton and spontaneous infiltration with Sn–10 wt % Pb melt. The effect of the time delay between the end of combustion and the start of infiltration with melt on spontaneous infiltration, density, microstructure, and phase composition of cermet was investigated. It was found that the phase composition of Ti<sub>3</sub>SiC<sub>2</sub>–Sn(Pb) cermet does not significantly depend on the time delay and consists mainly of Sn, Pb, TiC, and Ti<sub>3</sub>SiC<sub>2</sub>. It was shown that the compressive strength of the synthesized cermet is 117 MPa that is nearly twice as large as that of Sn–10 wt % Pb alloy (47 MPa).</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 1","pages":"30 - 35"},"PeriodicalIF":0.6,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4198343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Welding in Ti–Al and Ni–Al Systems by Self-Propagating High-Temperature Synthesis 自传播高温合成在Ti-Al和Ni-Al体系中的焊接
IF 0.6
International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-04-05 DOI: 10.3103/S1061386223010077
A. E. Sytschev, M. L. Busurina, O. D. Boyarchenko, S. G. Vadchenko
{"title":"Welding in Ti–Al and Ni–Al Systems by Self-Propagating High-Temperature Synthesis","authors":"A. E. Sytschev,&nbsp;M. L. Busurina,&nbsp;O. D. Boyarchenko,&nbsp;S. G. Vadchenko","doi":"10.3103/S1061386223010077","DOIUrl":"10.3103/S1061386223010077","url":null,"abstract":"<p>The possibility of welding between Ti–Al and Ni–Al layers via self-propagating high-temperature synthesis was demonstrated by using the heat released from the exothermic chemical reaction. The applied pressure and the presence of reactive intermediate layers (Cu, Al) are the most important requirements for strong welding. In the TiAl/NiAl system, there is a temperature gradient, and the main heat transfer occurs toward the Ti–Al layer, resulting in increased Ni diffusion. The increased mobility of Ni atoms is due to their smaller atomic radius as compared to Ti. The proposed technique seems attractive for repair operations and deposition of coatings in special-purpose applications.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 1","pages":"36 - 40"},"PeriodicalIF":0.6,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4194931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SHS and Study of Ni/TiC Catalysts for CO2 Hydrogenation to Methane CO2加氢制甲烷的SHS及Ni/TiC催化剂的研究
IF 0.6
International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-01-09 DOI: 10.3103/S1061386222040082
E. V. Pugacheva, S. Ya. Zhuk, R. A. Kochetkov, B. S. Seplyarskii, V. N. Borshch
{"title":"SHS and Study of Ni/TiC Catalysts for CO2 Hydrogenation to Methane","authors":"E. V. Pugacheva,&nbsp;S. Ya. Zhuk,&nbsp;R. A. Kochetkov,&nbsp;B. S. Seplyarskii,&nbsp;V. N. Borshch","doi":"10.3103/S1061386222040082","DOIUrl":"10.3103/S1061386222040082","url":null,"abstract":"<p>Ni/TiC catalysts were produced by SHS from granular Ti + C + Ni mixtures and leaching in NaOH solution followed by stabilization with H<sub>2</sub>O<sub>2</sub> solution of intermetallic precursors prepared by SHS from TiC + (Ni + Al) mixtures. Prepared granular and powder catalysts were characterized by XRD, SEM, EDS, and BET method. The catalytic activity of catalysts was determined in the temperature range of 150–400°С using the CO<sub>2</sub> + H<sub>2</sub> mixtures with different Н<sub>2</sub> concentration. It was found that catalyst containing 10 wt % Ni leached from precursor with Ni : Al = 1 : 2 possesses the highest hydrogenating activity at 350°С and 20 vol % H<sub>2</sub>.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 4","pages":"230 - 235"},"PeriodicalIF":0.6,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4386268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Temperature Interaction between Carbon Fibers and Cu–Ag Eutectic Alloy 碳纤维与Cu-Ag共晶合金的高温相互作用
IF 0.6
International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-01-09 DOI: 10.3103/S1061386222040112
A. E. Sytschev, S. G. Vadchenko, M. L. Busurina, O. D. Boyarchenko, A. V. Karpov
{"title":"High-Temperature Interaction between Carbon Fibers and Cu–Ag Eutectic Alloy","authors":"A. E. Sytschev,&nbsp;S. G. Vadchenko,&nbsp;M. L. Busurina,&nbsp;O. D. Boyarchenko,&nbsp;A. V. Karpov","doi":"10.3103/S1061386222040112","DOIUrl":"10.3103/S1061386222040112","url":null,"abstract":"<p>High-temperature interaction of 30 wt % Cu–70 wt % Ag eutectic alloy with carbon fibers was studied. It was shown that Cu–Ag drops coated with carbon film are formed on the surface of carbon fibers. Carbon atoms dissolved in the molten Cu–Ag phase precipitated out on the drop surface at a lower temperature, thus resulting in growing few-layer graphene. Cu–Ag–carbon fibers composites sintered at 670°C was shown to represent a porous structure containing spherical Cu–Ag particles and carbon fibers. It was revealed that as C is added, the electrical resistivity of sintered samples decreases. Raman spectra of sintered composites containing 3.0 and 6.3 wt % C showed the formation of a multilayer graphene coating with a disordered structure.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 4","pages":"188 - 194"},"PeriodicalIF":0.6,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4383310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Explosion in Ti + Zr + Hf + Nb + Ta + 5С System: Effect of Mechanical Activation Ti + Zr + Hf + Nb + Ta + 5С体系的热爆炸:机械活化效应
IF 0.6
International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-01-09 DOI: 10.3103/S1061386222040136
S. G. Vadchenko, I. D. Kovalev, N. I. Mukhina, A. S. Sedegov, A. S. Rogachev
{"title":"Thermal Explosion in Ti + Zr + Hf + Nb + Ta + 5С System: Effect of Mechanical Activation","authors":"S. G. Vadchenko,&nbsp;I. D. Kovalev,&nbsp;N. I. Mukhina,&nbsp;A. S. Sedegov,&nbsp;A. S. Rogachev","doi":"10.3103/S1061386222040136","DOIUrl":"10.3103/S1061386222040136","url":null,"abstract":"<p>The effect of various conditions of mechanical activation of Ti + Zr + Hf + Nb + Ta + 5C mixtures on the microstructure of composite particles, regularities of their ignition, and phase composition of final products was studied. The activation of mixtures was found to decrease the ignition temperature by 600–900°C. It was shown that the intense mechanical activation reduces the activity of the mixture and the subsequent ignition in the thermal explosion mode transforms the mixture into high-entropy compound. Such transformation is not observed in conditions of long-term low-intensity activation.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 4","pages":"208 - 214"},"PeriodicalIF":0.6,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4386582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Propagating High-Temperature Synthesis for Disposal of Radioactive Waste 自传播高温合成处理放射性废物
IF 0.6
International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-01-09 DOI: 10.3103/S1061386222040033
T. V. Barinova, M. I. Alymov
{"title":"Self-Propagating High-Temperature Synthesis for Disposal of Radioactive Waste","authors":"T. V. Barinova,&nbsp;M. I. Alymov","doi":"10.3103/S1061386222040033","DOIUrl":"10.3103/S1061386222040033","url":null,"abstract":"<p>In this review, SHS method for preparing mineral-like matrices for immobilization of high-level radioactive waste (HLW) was considered. Matrices for immobilization of different types of solid HLW were presented. Matrices based on pyrochlore, zirconolite, perovskite, garnet, pollucite, and titanium carbide were prepared by SHS process. Studies showed that SHS process seems promising for immobilization of different HLW in mineral-like matrix systems for their environmentally safe disposal.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 4","pages":"179 - 187"},"PeriodicalIF":0.6,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4383331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Explanation of Increase in Combustion Velocity of Ti + C Powder Mixture upon Dilution with Nickel Using Convective–Conductive Combustion Model 用对流传导燃烧模型解释镍稀释后Ti + C粉末混合物燃烧速度增加的原因
IF 0.6
International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-01-09 DOI: 10.3103/S1061386222040100
B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, N. M. Rubtsov, N. I. Abzalov
{"title":"Explanation of Increase in Combustion Velocity of Ti + C Powder Mixture upon Dilution with Nickel Using Convective–Conductive Combustion Model","authors":"B. S. Seplyarskii,&nbsp;R. A. Kochetkov,&nbsp;T. G. Lisina,&nbsp;N. M. Rubtsov,&nbsp;N. I. Abzalov","doi":"10.3103/S1061386222040100","DOIUrl":"10.3103/S1061386222040100","url":null,"abstract":"<p>For the first time, a comparative study of the macrokinetic combustion parameters for granular and powder Ti + C and (Ti + C) + 20% Ni mixtures with variation in Ti particle sizes from 31 to 142 µm was carried out. It was found that the combustion velocity of (Ti + C) + 20% Ni powder mixture is 2–3 times higher than that of Ti + C mixture, in spite of the lower combustion temperature. The data obtained contradict theoretical concepts about the dependence of the combustion velocity on the maximum temperature, which leads to a formal negative value of the activation energy of combustion. In the convective–conductive model of combustion, these unusual results are explained by the strong effect of impurity gas release on the combustion velocity. For Ti + C and (Ti + C) + 20% Ni compositions, the conditions for heating particles of powder mixtures in the combustion wave warm-up zone were experimentally confirmed. The values of the reaction front velocity inside the granules were calculated using values of combustion velocities of samples with granules 0.6–1.7 mm in diameter for different sizes of Ti particles. They turned out to be several times higher than combustion velocities of powder mixtures with the same composition. The ratio of the values of the combustion velocity of the substance of the granules to the burning front velocity in the powder mixture can serve as a quantitative measure of the effect of the release of impurity gases on the burning velocity of powder mixtures. For both mixture compositions, the same power function ~<i>d</i><sup>–0.9</sup> approximates dependences of the combustion velocity inside the granules on the Ti particle size, which indicates the leading role of the Ti + C reaction in the propagation of the combustion wave.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 4","pages":"195 - 207"},"PeriodicalIF":0.6,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4386231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Forced SHS Compaction of NiTi NiTi的强制SHS压实
IF 0.6
International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-01-09 DOI: 10.3103/S1061386222050028
Yu. V. Bogatov, V. A. Shcherbakov, A. V. Karpov, A. E. Sytschev, D. Yu. Kovalev
{"title":"Forced SHS Compaction of NiTi","authors":"Yu. V. Bogatov,&nbsp;V. A. Shcherbakov,&nbsp;A. V. Karpov,&nbsp;A. E. Sytschev,&nbsp;D. Yu. Kovalev","doi":"10.3103/S1061386222050028","DOIUrl":"10.3103/S1061386222050028","url":null,"abstract":"<p>NiTi samples with a density of 6.65 g/cm<sup>3</sup> were prepared by forced SHS compaction from Ni + Ti powder mixture in an equiatomic ratio. Synthesized alloy was studied by scanning electron microscopy and X-ray diffraction analysis. It was shown that SHS-compacted sample contain NiTi (B2 + R) in addition to secondary phases: Ti<sub>2</sub>Ni, Ni<sub>4</sub>Ti<sub>3</sub>, and Ni. Electrical resistivity as a function of temperature in the range of 290–1150 K was studied.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 4","pages":"247 - 252"},"PeriodicalIF":0.6,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4387610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoporous Yttrium-Based Ceramic Materials for Filtration Processes in Conditions of Aggressive Environments and Radiation 纳米多孔钇基陶瓷材料在侵蚀环境和辐射条件下的过滤过程
IF 0.6
International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-01-09 DOI: 10.3103/S1061386222040045
R. D. Kapustin, V. I. Uvarov, A. O. Kirillov
{"title":"Nanoporous Yttrium-Based Ceramic Materials for Filtration Processes in Conditions of Aggressive Environments and Radiation","authors":"R. D. Kapustin,&nbsp;V. I. Uvarov,&nbsp;A. O. Kirillov","doi":"10.3103/S1061386222040045","DOIUrl":"10.3103/S1061386222040045","url":null,"abstract":"<p>Highly porous Y<sub>2</sub>O<sub>3</sub> based ceramic with nanoscale pores was prepared from an ultrafine mixture containing Y<sub>2</sub>O<sub>3</sub> powder as a filler and additives (MgO, SiC, and SiO<sub>2</sub>) as binders by combined use of compaction and thermochemical synthesis. The synthesized material was characterized by XRD/SEM and revealed to consist of Y<sub>2</sub>O<sub>3</sub>, Y<sub>2</sub>SiO<sub>5</sub>, MgO, and Si. Physical and mechanical properties such as specific surface area, density, compressive strength, and permeability were determined.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 4","pages":"215 - 219"},"PeriodicalIF":0.6,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4381400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Fuel on the SCS Temperature of Lithium Aluminate 燃料对铝酸锂SCS温度的影响
IF 0.6
International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-01-09 DOI: 10.3103/S1061386222050089
V. D. Zhuravlev, L. V. Ermakova, T. A. Patrusheva, V. G. Bamburov
{"title":"Influence of Fuel on the SCS Temperature of Lithium Aluminate","authors":"V. D. Zhuravlev,&nbsp;L. V. Ermakova,&nbsp;T. A. Patrusheva,&nbsp;V. G. Bamburov","doi":"10.3103/S1061386222050089","DOIUrl":"10.3103/S1061386222050089","url":null,"abstract":"<p>A comparative analysis of the combustion profiles of SCS of lithium aluminate from a solution of aluminum nitrate and lithium nitrate or carbonate with glycine, leucine, and urea was performed. The influence of the starting solution composition on the maximum combustion temperature and combustion profile was considered. It was found that maximum combustion temperature, 771°C, is observed in case of synthesis of nitrate solution with glycine and urea (1 : 3). The appearance of ballast lithium aminoacetate during syntheses of aluminum nitrate with lithium carbonate and glycine was shown to reduce the maximum combustion temperature by almost 100°C. Replacing lithium nitrate with lithium carbonate decreased the temperature at which γ-LiAlO<sub>2</sub> started to form and made it possible to obtain monophasic α-LiAlO<sub>2</sub> after heat treatment at 500–550°C.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 4","pages":"253 - 260"},"PeriodicalIF":0.6,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4381383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信