M. L. Busurina, A. E. Sytschev, P. A. Lazarev, O. D. Boyarchenko, A. O. Sivakova, Yu. G. Morozov
{"title":"Al70Co15Ni15和Al65Cu20Co15准晶的SHS","authors":"M. L. Busurina, A. E. Sytschev, P. A. Lazarev, O. D. Boyarchenko, A. O. Sivakova, Yu. G. Morozov","doi":"10.3103/S1061386223030056","DOIUrl":null,"url":null,"abstract":"<p>Decagonal quasicrystals in Al–Co–Ni and Al–Co–Cu systems were first prepared by SHS method. XRD analysis showed that the synthesis of Al–Co–Cu system yields Al<sub>70</sub>Co<sub>15</sub>Ni<sub>15</sub> quasicrystalline phase; meanwhile, in the Al–Co–Ni system, the synthesized product contains Al<sub>70</sub>Co<sub>15</sub>Ni<sub>15</sub> quasicrystals as a basis with minor addition of cubic Al<sub>58</sub>Co<sub>76</sub>Ni<sub>66</sub> phase. Both synthesized materials have weak magnetic properties with maximum magnetization of 0.145–0.730 emu/g for the applied magnetic field of 10 kOe.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 3","pages":"215 - 220"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SHS of Al70Co15Ni15 and Al65Cu20Co15 Quasicrystals\",\"authors\":\"M. L. Busurina, A. E. Sytschev, P. A. Lazarev, O. D. Boyarchenko, A. O. Sivakova, Yu. G. Morozov\",\"doi\":\"10.3103/S1061386223030056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Decagonal quasicrystals in Al–Co–Ni and Al–Co–Cu systems were first prepared by SHS method. XRD analysis showed that the synthesis of Al–Co–Cu system yields Al<sub>70</sub>Co<sub>15</sub>Ni<sub>15</sub> quasicrystalline phase; meanwhile, in the Al–Co–Ni system, the synthesized product contains Al<sub>70</sub>Co<sub>15</sub>Ni<sub>15</sub> quasicrystals as a basis with minor addition of cubic Al<sub>58</sub>Co<sub>76</sub>Ni<sub>66</sub> phase. Both synthesized materials have weak magnetic properties with maximum magnetization of 0.145–0.730 emu/g for the applied magnetic field of 10 kOe.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"32 3\",\"pages\":\"215 - 220\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386223030056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386223030056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
SHS of Al70Co15Ni15 and Al65Cu20Co15 Quasicrystals
Decagonal quasicrystals in Al–Co–Ni and Al–Co–Cu systems were first prepared by SHS method. XRD analysis showed that the synthesis of Al–Co–Cu system yields Al70Co15Ni15 quasicrystalline phase; meanwhile, in the Al–Co–Ni system, the synthesized product contains Al70Co15Ni15 quasicrystals as a basis with minor addition of cubic Al58Co76Ni66 phase. Both synthesized materials have weak magnetic properties with maximum magnetization of 0.145–0.730 emu/g for the applied magnetic field of 10 kOe.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.