{"title":"Non-collinear equilibrium points in the perturbed restricted three-body problem with unstable elongated primary","authors":"Ravi Kumar Verma, Badam Singh Kushvah","doi":"10.1007/s12648-024-03383-1","DOIUrl":"https://doi.org/10.1007/s12648-024-03383-1","url":null,"abstract":"<p>In this paper, we have studied the motion around the non-collinear equilibrium points in the perturbed circular restricted three-body problem. The bigger primary is considered a point mass, and the smaller primary is an unstable elongated primary. The unstable elongated primary refers to the elongated primary rotates about its centre point, i.e. at an instant, the line joining the two ends of the elongated primary and the <i>x</i>-axis makes an angle, <span>(theta in [0,360^circ ))</span>. Computations of the non-collinear equilibrium points <span>(L_{4,5})</span>, and their linear stability, are investigated, and the results are applied to the Jupiter-Amalthea, Saturn-Prometheus and Pluto-Hydra systems. It is found that the positions of the non-collinear equilibrium points <span>(L_{4,5})</span> remain unchanged with variation in the angle, <span>(theta )</span>, but small variation in the critical mass parameter, <span>(mu _c)</span> is observed. Variations of the critical mass, <span>(mu _c)</span>, with different segment-length and its rotation are studied. Stable solutions around <span>(L_4)</span> are obtained in the systems of Jupiter-Amalthea, Saturn-Prometheus, and Pluto-Hydra using the established results.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"4 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Shoaib, I. Khan, Safdar Khan, S. Mukamil, Ahmad A. Ifseisi, Mohamed E. Assal, F. Qiao, I. Ullah, S. A. Khattak, G. Rooh, J. Kaewkhao
{"title":"Analysis of Eu3+-ions concentration effect on the spectral properties of zinc-barium-boron-tellurite glasses","authors":"M. Shoaib, I. Khan, Safdar Khan, S. Mukamil, Ahmad A. Ifseisi, Mohamed E. Assal, F. Qiao, I. Ullah, S. A. Khattak, G. Rooh, J. Kaewkhao","doi":"10.1007/s12648-024-03370-6","DOIUrl":"10.1007/s12648-024-03370-6","url":null,"abstract":"<div><p>The present study aims to examine the concentration effect of Eu<sup>3+</sup> ions in Boro Tellurite glass and how it affects its physicochemical and photo luminescent characteristics. Using the melt quenching method, a series of Boro-Telluride glasses with the composition (30-x) TeO<sub>2</sub>–30B<sub>2</sub>O<sub>3</sub>–10ZnO–30BaO–xEu<sub>2</sub>O<sub>3</sub> (where x = 0.00, 0.05, 0.10, 0.50, 1.00, 1.50, 2.00, and 2.50 mol%) were synthesized. The results of the XRD analysis revealed that the prepared samples are amorphous. As the concentration of the Eu<sub>2</sub>O<sub>3</sub> increases, the density and refractive index rise, but the molar volume decreases, indicating that the glass matrix has become more compact. Similarly, the absorption spectra and oscillator strength calculated with JO theory demonstrate the transition from 7F<sub>0</sub> to <sup>5</sup>L<sub>6</sub> (in the UV–Vis region) and <sup>7</sup>F<sub>0</sub> to <sup>5</sup>L<sub>6</sub> (in the NIR region) is more intense. For TBZB–Eu7 glass, the phonon sideband energy is estimated to be 717 cm<sup>−1</sup> and compared with the BGO scintillator, the integrated scintillation efficiency is estimated to be 16.14%. These findings demonstrate that the current glasses doped with 2 mol% Eu<sup>3+</sup> exhibit strong luminescence qualities and can be used for portal imaging systems (MeV energies) non-destructive analysis such as industrial and medical X-ray imaging systems, and also have potential for laser application.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 4","pages":"1319 - 1326"},"PeriodicalIF":1.6,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of magnetotransport properties of layered magnetic structures using the Boltzmann approach","authors":"Bassem Elsafi","doi":"10.1007/s12648-024-03388-w","DOIUrl":"10.1007/s12648-024-03388-w","url":null,"abstract":"<div><p>The study investigates the transport properties of a ferromagnetic–non-magnetic–ferromagnetic metallic trilayer system at room temperature, focusing on electronic current flow within the plane of the film. The analysis is conducted by solving the Boltzmann kinetic equation to explore the impact of geometric random roughness on the magnetoresistance effect and the resistivity behaviour in two magnetic configurations: parallel and antiparallel. The research also examines the effects of altering the chemical composition of the interfaces. Two scattering scenarios at the outer surfaces are considered: fully specular and fully diffuse. The findings indicate that the quality of the surfaces significantly affects electron transport in these ultra-thin magnetic layers. Notably, the highest magnetoresistance is observed in trilayers with smooth interfaces and completely diffusive surfaces.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 4","pages":"1371 - 1377"},"PeriodicalIF":1.6,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suraj Sunil Joshi, Vikas M. Shelar, A. H. Shridhar, Sikandar H. Dhannur, Moamen S. Refat, Amnah Mohammed Alsuhaibani, Lohit Naik
{"title":"Optical characterization of oxadiazoles analogues doped PMMA film for photonic application","authors":"Suraj Sunil Joshi, Vikas M. Shelar, A. H. Shridhar, Sikandar H. Dhannur, Moamen S. Refat, Amnah Mohammed Alsuhaibani, Lohit Naik","doi":"10.1007/s12648-024-03386-y","DOIUrl":"https://doi.org/10.1007/s12648-024-03386-y","url":null,"abstract":"<p>In the present study, newly synthesized nitrobenzene derivatives (PBT and PBF) doped poly(methyl methacrylate) films were prepared using spin coating techniques, and their optical properties were analyzed. The absorption spectra of various weight percentages (0.02%, 0.1%, 0.2%, and 0.3%) of nitrobenzene derivative-doped polymer films were recorded using a UV–visible spectrometer. From the absorption spectra, optical properties such as refractive index, band gap energy, extinction coefficient, and dielectric constant were calculated. The effect of doping on the optical properties of PMMA was investigated, with results revealing normal dispersive behavior from the refractive index and extinction coefficient. Atomic force microscopy and scanning electron microscopy images indicated that the synthesized films have a low degree of roughness and a smooth surface. Additionally, the nonlinear optical properties of the PBF-doped polymer film were investigated, and the β value was determined to be 7.403 cm/W. Overall, the findings suggest that PBF-doped polymer films are promising candidates for photonic applications.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"59 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Ismaeel Zare Davijani, Abdollah Abbasi, Hassan Khalesi
{"title":"Enhanced absorption in thin-film silicon solar cell using buried silver nanoparticles","authors":"Mohammad Ismaeel Zare Davijani, Abdollah Abbasi, Hassan Khalesi","doi":"10.1007/s12648-024-03387-x","DOIUrl":"https://doi.org/10.1007/s12648-024-03387-x","url":null,"abstract":"<p>This paper investigates the enhancement of absorption in thin-film silicon solar cells using rectangular prism nanoparticles, analyzed through the finite-difference time-domain method. The study incorporates perfectly matched layer boundaries and periodic boundary conditions to accurately model light interaction. Monitors placed 5 nm within the silicon layer are used to assess input and output light intensities and minimize undesired reflections. The primary focus is on studying the impact of nanoparticle positioning within the silicon layer (referred to as buried nanoparticles) on absorption enhancement. Results indicate that absorption enhancement increases as nanoparticles are buried deeper into the silicon absorber layer, up to a depth of 60 nm. However, beyond this depth (up to 80 nm), the enhancement diminishes, achieving only 40% of the maximum enhancement observed. When nanoparticles are buried 100 nm into the silicon absorber layer, the absorption enhancement reaches 84%, representing the highest reported enhancement in this study.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"29 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ghasem KhosroBeygi, Mohammad Reza Jafari, Mehran Shahmansouri
{"title":"Tunable band-pass plasmonic waveguide-filter in the near infrared region","authors":"Ghasem KhosroBeygi, Mohammad Reza Jafari, Mehran Shahmansouri","doi":"10.1007/s12648-024-03371-5","DOIUrl":"10.1007/s12648-024-03371-5","url":null,"abstract":"<div><p>A tunable multi-channel band-pass plasmonic filter in the near-infrared range is investigated using the finite element numerical method (FEM). The structure of the proposed waveguide filter consists of several dielectric slots sandwiched between two metal layers. The slots are filled with air and silica. Numerical analysis and simulation demonstrate that the number of bandpass channels, amplitude, intensity, and bandwidth can be adjusted by changing the geometrical parameters such as material, length of each slot, width, and number of intermediate slots in the filter. The proposed filter was studied in the wavelength range of 1–4 μm, exhibiting 2 to 5 transmission peaks with varying transmission powers. Given that the incident wavelength in this article is larger than the dimensions of the waveguide and slot, this structure can focus the light within a sub-wavelength scale. The proposed structure is expected to be used as an essential component of photonics devices due to its ability to confine light in the sub-wavelength region, simple fabrication, and multi-channel operation.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 4","pages":"1327 - 1334"},"PeriodicalIF":1.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. V. Mahesh Babu, N. Dhananjaya, H. C. Manjunatha, N. Sowmya
{"title":"A detail investigation on quaternary, ternary, and binary fission of Nobelium","authors":"A. V. Mahesh Babu, N. Dhananjaya, H. C. Manjunatha, N. Sowmya","doi":"10.1007/s12648-024-03358-2","DOIUrl":"https://doi.org/10.1007/s12648-024-03358-2","url":null,"abstract":"<p>The quaternary, <span>(alpha)</span>-ternary, and binary fission of <span>(^{249-262})</span>No has been studied by considering the role of deformation and angle of orientation. identified by investigating driving potential, yield, and half-lives. The identified fission fragment combination from the cold-valley plot possesses nearly magic and magic numbers of either atomic/neutron numbers or both. The branching ratio of <span>(alpha)</span>-decay with respect to quaternary, <span>(alpha)</span>-ternary, and binary fission is studied. After rigorous investigation between different decay modes, it was is noticed that <span>(^{249})</span>No and <span>(^{261})</span>No undergo spontaneous fission. The quaternary fission of <span>(^{249-262})</span>No is the first of its kind that is not observed in the literature. Spontaneous fission half-lives of <span>(^{249})</span>No and <span>(^{261})</span>No posses shorter half-lives when compared to other possible decay modes such as quaternary fission, <span>(alpha)</span>-ternary, binary fission, alpha, and <span>(beta)</span>-decay. The half-lives of <span>(^{249})</span>No and <span>(^{261})</span>No are found to be 1.05<span>(times 10^{-2})</span>s and 123, respectively. We hope that the present work will lay the foundation for future investigations.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"3 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effects of magnetic field on thermodynamic properties of alternating Heisenberg chain","authors":"Hamed Rezania","doi":"10.1007/s12648-024-03382-2","DOIUrl":"10.1007/s12648-024-03382-2","url":null,"abstract":"<div><p>We study the effects of longitudinal magnetic field and temperature on the thermodynamic properties of one dimensional alternating Heisenberg antiferromagnet on the chain in the presence of dimerization parameter. In particular, the temperature dependence of specific heat have been investigated for various dimerization parameter and magnetic field strength in the model Hamiltonian. Using a hard core bosonic representation, the behaviors of thermodynamic properties have been studied by means of excitation spectrum of mapped bosonic gas. The effect of dimerization parameter, as the ratio between two types of exchange constants, on thermodynamic properties has also been studied via the bosonic model by Green’s function approach. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various dimerization parameters. At low temperatures, the specific heat is found to be monotonically increasing with temperature for magnetic fields in the gapped field induced phase region. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various dimerization parameter due to increase of energy gap in the excitation spectrum. Also we have studied the dependence of magnetization on magnetic field for different dimerization parameters.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 4","pages":"1361 - 1370"},"PeriodicalIF":1.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. S. Ibrahim, Qamar Ommeish, Sherif A. Khairy, Mostafa A. Ibrahim
{"title":"AC conductivity, dielectric and thermal properties of hybrid composite: bagasse cellulose carbon nanofibers composite","authors":"S. S. Ibrahim, Qamar Ommeish, Sherif A. Khairy, Mostafa A. Ibrahim","doi":"10.1007/s12648-024-03303-3","DOIUrl":"10.1007/s12648-024-03303-3","url":null,"abstract":"<div><p>This study investigates the impact of incorporating carbon nanofibers (CNFs) into sugar cane cellulose at a high weight ratio (6 wt.%). Composite samples were prepared using a hot hydraulic press technique, and their thermal stability was analyzed through thermal gravitational analysis in a nitrogen environment. The results indicate that the cellulose-CNF composite exhibits a simplified single-stage decomposition compared to the more complex behavior observed in pure cellulose. FTIR analysis reveals the presence of –OH bonds, indicating enhanced hydrophilic properties in the composite. Dielectric spectroscopy, conducted over a frequency range of 100 Hz to 1 MHz, explores the effects of CNFs on the relaxation and conduction mechanisms at different temperatures. Parameters such as dielectric permittivity, AC conductivity, electrical modulus, and complex impedance were studied, incorporating Jonscher’s equation, and the Havriliak–Negami model. The interplay between interfacial charge and cellulose crystallinity emerged as a crucial factor in the observed dielectric behavior. Overall, this research provides insights into the thermal and dielectric properties of cellulose/CNF composites, offering potential applications in diverse fields.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 2","pages":"535 - 550"},"PeriodicalIF":1.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12648-024-03303-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. M. Alotaibi, Haifa A. Al-Yousef, A. Atta, E. Abdeltwab, M. M. Abdelhamid
{"title":"Synthesis, structural studies and optical behavior of methylcellulose/CuO nanomaterials for optoelectronics","authors":"B. M. Alotaibi, Haifa A. Al-Yousef, A. Atta, E. Abdeltwab, M. M. Abdelhamid","doi":"10.1007/s12648-024-03218-z","DOIUrl":"10.1007/s12648-024-03218-z","url":null,"abstract":"<div><p>The polymer methyelcellouse (MC) is mixed with copper oxide (CuO) to form the MC/CuO composite using the solution casting approach for optoelectronic devices. The X-ray diffraction (XRD) analysis verified the successful preparation of the nanocomposite films. The XRD data reveals that the pristine film’s structural properties are improved after embedding CuO nanoparticles. The effects of CuO on the optical characteristics were examined. The pure MC had dispersion energy of 0.48 eV, while the MC with 3% CuO had 0.17 eV, the MC with 6% CuO had 0.07 eV, and the MC with 9% CuO had 0.03 eV. However, compared to MC, the oscillation energy E<sub>0</sub> modified from 3.86 for MC to 4.03, 4.22, and 4.77 eV, respectively. The optical properties of MC/CuO composites exhibited a notable enhancement compared to pure MC. This study focuses on developing flexible nanocomposite materials exhibiting unique properties that have potential use in high-performance optoelectronic devices.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"98 13","pages":"4473 - 4481"},"PeriodicalIF":1.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}