{"title":"Domain-wall dark pulse generation with polyacrylonitrile as saturable absorber","authors":"Xiaoyou Song, Abdulkadir Mukhtar Diblawe, Zian Cheak Tiu, Sameer Salam, Fatimah Ibrahim, Sulaiman Wadi Harun","doi":"10.1007/s12648-024-03384-0","DOIUrl":"10.1007/s12648-024-03384-0","url":null,"abstract":"<div><p>We have demonstrated a domain-wall dark pulse by using a polyacrylonitrile film as a saturable absorber (SA) in Erbium-doped fiber laser (EDFL) cavity. The preparation of the polyacrylonitrile thin film SA and the performance analysis of the film were described. The dual wavelengths are stably lased at 1560.43 nm and 1561.17 nm to induce topological defect in temporal domain. Within the pumping range of 97.76–165.26 mW, we observed the dark pulse oscillation in the fiber laser cavity with repetition rate of 0.99 MHz and pulse width of 306 µs. The highest average pulse energy of 6.54 nJ was achieved at pump power of 165.26 mW, with a signal-to-noise ratio of 67 dB. The stable formation of dark pulses in the fiber laser system demonstrates that the polyacrylonitrile thin film SA has significant potential for commercial applications. This advancement not only highlights its promise for future industry use but also establishes a foundation for growth in sustainable technologies.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 4","pages":"1503 - 1508"},"PeriodicalIF":1.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anisotropic cosmological models in f(T) theory of gravity with mixture of fluids","authors":"V. J. Dagwal","doi":"10.1007/s12648-024-03368-0","DOIUrl":"10.1007/s12648-024-03368-0","url":null,"abstract":"<div><p>This study presents anisotropic cosmological models in<i> f</i>(<i>T</i>) theory of gravity with mixture of fluids. The <span>(fleft( T right))</span> theory of gravity is the generalization of the Teleparallel theory of gravity, where <i>T</i> is the torsion scalar. In order to obtain a deterministic solution of the field equations, I have assumed that the two sources of the perfect fluid and dark energy interact minimally with separate conservation of their energy–momentum tensors as well EoS parameter of the perfect fluid is assumed to be constant. In this paper, I have investigated dark energy models such as quintessence, chaplygin gas, cosmological constant with assist of <i>f</i>(<i>T</i>) gravity. Role of the cosmological constant <span>(Lambda)</span> term in the evolution of the anisotropic universe has been studied. The diagnostics parameters <span>(r(z))</span>, <span>(s(z))</span> and <span>(om(z))</span> are investigated. I have discussed observational fitting concerning.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 4","pages":"1555 - 1567"},"PeriodicalIF":1.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adeel Tahir, Ahmed Ali Rajput, Mustaqeem Zahid, Shafiq Ur Rehman
{"title":"A Triangular based determination of temperature using artificial intelligence","authors":"Adeel Tahir, Ahmed Ali Rajput, Mustaqeem Zahid, Shafiq Ur Rehman","doi":"10.1007/s12648-024-03381-3","DOIUrl":"https://doi.org/10.1007/s12648-024-03381-3","url":null,"abstract":"<p>The forecasting method emerged in the middle of the twentieth century; its usage has grown exponentially in all aspects of life. More importantly, estimating modern meteorological parameters helps make good decisions regarding weather, health, and agricultural safety measures. Similarly, this study aims to find a better-fitting technique to translate Quetta’s (Pakistan) temperature distribution using its three neighboring stations, Chaman, Kalat, and Sibi. In this regard, a well-known machine learning technique named Artificial Neural Network was utilized. Additionally, four training algorithms are also considered to optimize the model performance. Apart from that, another traditional statistical model is incorporated, which is a Multiple Linear Regression (MLR). Since the temperature distribution has a nonlinear trend, MLR techniques are also useful for making predictions. Machine learning and linear statistical models are provided with seven years of data from 2011 to 2017 for training purposes. Three sets of data for 2018, 2019, and 2020 are fed to determine how these trained models show close agreements with the actual temperature distribution. Different errors are evaluated to assess model performance, such as mean squared error (MSE), mean absolute percentage error (MAPE), mean absolute bias error (MABE), and chi-squared error. <span>({chi }^{2})</span>, and coefficient of determination (R<sup>2</sup>). For ANN, the models with the lowest MABE and MAPE values are ANN-RB and ANN-BR, whereas the model with the lowest MSE value, 1.3604, is the ANN-BFG model. The model with the highest correlation is the ANN-BFG model. On the other hand, MLR has an MSE of 1.4253 and a coefficient of determination of 0.9860.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"19 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling the physics of acoustic insulation: multilayer flow resistivity estimation","authors":"M. Sadouki","doi":"10.1007/s12648-024-03391-1","DOIUrl":"10.1007/s12648-024-03391-1","url":null,"abstract":"<div><p>This paper presents a computational methodology aimed at precisely estimating the physical law governing equivalent flow resistivity in multilayer rigid porous materials, with a specific focus on applications in acoustic insulation systems. While existing models are capable of predicting sound transmission through individual layers, they lack a direct theoretical analytical link between the flow resistivity of multilayer materials and the properties of their constituent layers. To address this gap, the study harnesses equivalent fluid theory, which integrates visco-inertial interactions between the material structure and the interstitial fluid. By establishing simplified expressions for the transmission coefficient of a bilayer medium under low-frequency Darcy conditions, the paper introduces a novel approach to estimation. Furthermore, it formulates a concise relationship between the resistivity of the bilayer medium and the resistivity and thickness of each layer, which extends to multilayer configurations. Experimental validation with bilayer samples demonstrates significant agreement between the directly obtained equivalent flux resistivity and the theoretically predicted values, with relative errors ranging from 3 to 18%. The significance of this paper lies in its practical implications for acoustic insulation systems, where accurate predictions of acoustic performance are crucial. The research introduces a reliable physical relationship for estimating the equivalent flow resistivity of a multilayer as a function of the flow resistivity of each constituent layer and its thickness, offering theoretical correlation with empirical data and providing an alternative to labor-intensive experimental methods and software. This contribution to acoustics facilitates accurate prediction and characterization of the acoustic properties of multilayer materials, thereby aiding in the design of effective noise control systems.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 3","pages":"1051 - 1061"},"PeriodicalIF":1.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Tebboune, H. Riane, F. Boukabrine, H. Rozale, A. Chahed, A. sayade
{"title":"Effect of Sulfur dopants atoms on the electronic and optical properties of Silver oxides from hybrid density functional theory","authors":"W. Tebboune, H. Riane, F. Boukabrine, H. Rozale, A. Chahed, A. sayade","doi":"10.1007/s12648-024-03366-2","DOIUrl":"https://doi.org/10.1007/s12648-024-03366-2","url":null,"abstract":"<p>The structural and electronic properties, as well as the stability of Ag<sub>2</sub>O<sub>1−x</sub>S<sub>x</sub> (x = 0, 0.25, 0.5, 0.75 and 1) compounds have been investigated through first-principles calculation.The FP-LAPW method within theGGA-PBE, TB-mBJ and HSE06 functional approximations was chosen in the computational approach. The computed lattice constant for Ag<sub>2</sub>O and Ag<sub>2</sub>S was found to be consistent with the theoretical and experimental results. For electronic properties,the reproduction of the experimental band gap energy is seen with the hybrid-DFT functionalHSE06, compared to GGA-PBE and for TB-mBJ.In order to better understand the behavior of electronic states of Silver-based compounds, details of the electronic properties would be valuable. It is believed that changes of the Fermi level of a semiconductor will definitely affect its photocatalytic properties due to the contribution of strong hybridization between the O and S <i>p</i> states and Ag <i>d</i> states.From the optical results we demonstrate that the studied materials are important for optoelectronic devices because it exhibited a wide range of absorption spectra.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"6 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamical fluctuations of pions in pp collisions at different LHC energies: an in-depth analysis with factorial correlator","authors":"Tumpa Biswas, Azharuddin Ahmed, Subhadeep Paul, Dibakar Dhar, Sanjib Kumar Manna, Mehedi Kalam, Dipak Ghosh, Prabir Kumar Haldar","doi":"10.1007/s12648-024-03385-z","DOIUrl":"10.1007/s12648-024-03385-z","url":null,"abstract":"<div><p>This paper presents an analysis on the basis of factorial correlators and oscillatory multiplicity moments among the pions extracted from Monte Carlo (MC) generated PYTHIA(v8.3), AMPT(v2.26) and UrQMD(v3.4) models in <i>pp</i> collisions at different center-of-mass (c.m) energies <span>(sqrt{s}=)</span> 2.76 – 13 TeV. During this investigation, we have found the presence of short-range correlation and our overall findings are accordant with the predictions of the <span>(alpha)</span>-model and <span>(log)</span>-normal approximation which indicates the existence of intermittent nature of self-similar dynamical fluctuations. Short-range Correlation strength gradually decreases with the increase in collision energies from <span>(sqrt{s})</span> = <span>(2.76-13)</span> TeV is observed. From the analysis of oscillatory multiplicity moments, the ratios <span>(H_q)</span> (cumulant over factorial moments <span>(K_q/F_q)</span>) have been derived for each MC generated Model with LHC energies. It is extremely interesting to observe that the oscillations from PYTHIA and UrQMD are quite different from the AMPT model at <span>(sqrt{s})</span> = 13 TeV.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 4","pages":"1447 - 1461"},"PeriodicalIF":1.6,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kotha Gangadhar, S. Venkata Krishna Sarma, M. Venkata Subba Rao, Abderrahim Wakif
{"title":"Bioconvection-enhanced oblique motion of chemically reactive Oldroyd-B liquid over a convectively heated elastic surface","authors":"Kotha Gangadhar, S. Venkata Krishna Sarma, M. Venkata Subba Rao, Abderrahim Wakif","doi":"10.1007/s12648-024-03377-z","DOIUrl":"10.1007/s12648-024-03377-z","url":null,"abstract":"<div><p>The present study focuses on the investigation of bioconvection applications, shedding light on the significant implications for environmentally friendly and sustainable ‘green’ fuel cell technologies. In this context, the study paves the way for further exploration of the Oldroyd-B fluid model in the presence of gyrotactic microorganisms. The analysis delves into the mixed convection of the Oldroyd-B fluid with gyrotactic microorganisms, exploring the effects of an elastic surface and magnetic field interactions. Notably, the study considers the influence of chemical reaction processes, convective heating, and thermal radiation, enhancing our understanding of these complex phenomena. The governing two-dimensional equations for motion, momentum, mass, and energy were normalized using nonlinear system-wide ordinary differential equations through appropriate transformation methods. The resulting solution for this intricate physical problem was obtained using the bvp4c method, and its validity was confirmed by comparing it with previously reported findings in the literature. The study indicates that higher porosity and magnetic parameters significantly influence velocity profiles. Meanwhile, the temperature profile improves, and the thermal field is enhanced by Brownian diffusion and radiation variables. Additionally, the Peclet number affects the density of microorganisms. Furthermore, an increase in thermophoresis significantly reduces the wall heat transfer rate for both radiation and non-radiation cases.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 4","pages":"1427 - 1437"},"PeriodicalIF":1.6,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generalised transformation relations for superluminal particles in (3 + 1) dimensional system","authors":"Vivek Kumar Srivastava, Alok Kumar Verma, Garima Vaish","doi":"10.1007/s12648-024-03379-x","DOIUrl":"10.1007/s12648-024-03379-x","url":null,"abstract":"<div><p>Here, we have proposed new transformation relations between two inertial frames with relative velocity greater than speed of light and discussed the required conditions to detect superluminal particles in the physical realm. A novel theoretical formulation is conceptualized to uniquely depict the frame of reference, valid for all ranges of velocities, in a complex plane. In the tachyonic regime, the super-relativistic gamma factor is obtained by parameterizing the generalised gamma factor using the complementary frames of reference of superluminal and subluminal spaces. The formulations of transformation relations have been analysed in four different classes, i.e., two inter and two intra classes of frames, for subluminal and superluminal particles. The intra classes of frames encompass real gamma factors, whilst, inter classes of frames involve imaginary gamma factors. These transformation relations in all four different classes are expressed in 4-vector form with their respective transformation matrices <span>((Lambda ))</span> and are found to be invariant under the transformations. This invariancy has led to the establishment of relationships among the transformation factors in stationary and moving frames. The velocity 4-vector relations for subluminal and superluminal particles, both in moving and stationary frames, have been evaluated. The 4-velocity transformation relations between particle velocity in stationary and moving frames are also introduced by using the transformation matrices. Based on these 4-velocity transformations, relative velocity addition relations have been deduced and discussed corresponding to each of the transformation relations. The generalised gamma factor has been concluded and validated for both frames of reference.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 4","pages":"1415 - 1426"},"PeriodicalIF":1.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Makrand E. Sonawane, Ketan P. Gattu, Vishnu V. Kutwade, Dipak A. Tonpe, Faizan M. Khan, Sumaiyya Shaikh, Prakash S. Gajbar, Ramphal B. Sharma
{"title":"Ni doping in CZTS solar cells: a path to enhanced photovoltaic performance","authors":"Makrand E. Sonawane, Ketan P. Gattu, Vishnu V. Kutwade, Dipak A. Tonpe, Faizan M. Khan, Sumaiyya Shaikh, Prakash S. Gajbar, Ramphal B. Sharma","doi":"10.1007/s12648-024-03327-9","DOIUrl":"10.1007/s12648-024-03327-9","url":null,"abstract":"<div><p>The present communication explores the optical, structural, compositional, and electrical properties of Copper Zinc Tin Sulfide (CZTS) and Nickel (Ni)-CZTS solar cells. A microwave-based synthesis method has been employed to synthesize CZTS and Ni-doped CZTS powders. X-ray diffraction and Raman scattering spectroscopy have confirmed the monophase kesterite crystal structure of CZTS and Ni-CZTS. Optical absorption spectroscopy of films in the UV–Visible range displays a strong absorption coefficient of more than <span>(10^{4} {text{cm}}^{ - 1})</span>. In response to Ni doping, the optical band gap energy of CZTS decreased to 1.41 eV from 1.5 eV. In both samples, positive Hall coefficients were detected, confirming the presence of p-type conductivity. This study aims to determine the effects of Ni-CZTS incorporation on the performance of FTO/CZTS/CdS/ZnO/Ag solar cells. The introduction of Ni-CZTS between CZTS and CdS resulted in optimum alignment and higher efficiency. 5% Ni doping concentration is found to be the optimum doping concentration, resulting in <span>(J_{sc} = 32.5;{text{mA}}/{text{cm}}^{2})</span>, <span>(V_{{{text{oc}}}} = 0.541;{text{V}})</span>, <span>({text{FF}} = 31%)</span> and the efficiency is 5.4%.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 3","pages":"1133 - 1143"},"PeriodicalIF":1.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diksha Solanki, Poonam Devi, Hina Dalal, Neeraj Sehrawat, Mukesh Kumar, Ojas Garg, Rajesh Kumar Malik
{"title":"Intense red emission from trivalent Eu3+ doped Ca9La(VO4)7 nanophosphor for lighting and latent fingerprinting applications","authors":"Diksha Solanki, Poonam Devi, Hina Dalal, Neeraj Sehrawat, Mukesh Kumar, Ojas Garg, Rajesh Kumar Malik","doi":"10.1007/s12648-024-03389-9","DOIUrl":"https://doi.org/10.1007/s12648-024-03389-9","url":null,"abstract":"<p>A quick, efficient, and environment-friendly solution combustion approach was used to develop intense red light emitting Eu<sup>3+</sup> activated Ca<sub>9</sub>La(VO<sub>4</sub>)<sub>7</sub> nanophosphor. Rietveld’s refinement of patterns obtained from XRD validated the trigonal structure & (R3c 161 space group) of the crystallized nanophosphors. Elemental analysis and surface morphology of the red phosphors were investigated by EDAX and SEM techniques. Tauc’s theory was used to determine the band gap of the host & optimized nanosample. The excitation spectra at 331 nm indicate energy transfer between VO<sub>4</sub><sup>3−</sup> → Eu<sup>3+</sup> ions, which is confirmed by photoluminescence lifetime measurements. The designated nanophosphors emit bright red light due to the <sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub> radiative transition. Dexter’s hypothesis and I–H model were used to demonstrate that dipole–dipole interactions are a true phenomenon for concentration quenching. Furthermore, the optical properties of Ca<sub>9</sub>La<sub>0.6</sub>Eu<sub>0.4</sub>(VO<sub>4</sub>)<sub>7</sub> nanophosphor exhibit quantum efficacy (58.67%), CIE co-ordinates (0.5192, 0.3313), and color-temperature (1717 K), making it suitable for use in wLEDs, photonic devices and based on the previously mentioned results, the optimum (i.e. Ca<sub>9</sub>La<sub>(1-x)</sub>Eu<sub>x</sub>(VO<sub>4</sub>)<sub>7</sub> (x = 0.4 mol%)) nanophosphor was shown to be useful for LFP (latent fingerprinting).</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"22 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}