具有抛物律非线性和时空色散的光学超材料啁啾解的研究

IF 1.6 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Shuang Li, Xing-Hua Du
{"title":"具有抛物律非线性和时空色散的光学超材料啁啾解的研究","authors":"Shuang Li,&nbsp;Xing-Hua Du","doi":"10.1007/s12648-024-03425-8","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the nonlinear Schrödinger equation, we investigate the exact nonlinear chirps of the dynamic model for the propagation of optical solitons in nonlinear metamaterials. The trial equation method and the complete discrimination system for polynomial method are utilized to construct dark soliton, bright soliton, kink soliton, anti-kink soliton, Jacobi elliptic function solutions, as well as singular rational and singular biperiodic solutions. Notably, we have derived new solutions in the forms of the kink soliton, anti-kink soliton, and Jacobi elliptic function. Therefore, we provide a comprehensive categorization of all solutions, along with the parameter requirements for determining their existence. Furthermore, we also receive corresponding amplitude and chirp graphs for specific physical parameters, which aid in understanding the propagation characteristics of chirped solutions in optical metamaterials.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 6","pages":"2217 - 2229"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of chirped solutions in optical metamaterials having parabolic law nonlinearity and space-time dispersion\",\"authors\":\"Shuang Li,&nbsp;Xing-Hua Du\",\"doi\":\"10.1007/s12648-024-03425-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the nonlinear Schrödinger equation, we investigate the exact nonlinear chirps of the dynamic model for the propagation of optical solitons in nonlinear metamaterials. The trial equation method and the complete discrimination system for polynomial method are utilized to construct dark soliton, bright soliton, kink soliton, anti-kink soliton, Jacobi elliptic function solutions, as well as singular rational and singular biperiodic solutions. Notably, we have derived new solutions in the forms of the kink soliton, anti-kink soliton, and Jacobi elliptic function. Therefore, we provide a comprehensive categorization of all solutions, along with the parameter requirements for determining their existence. Furthermore, we also receive corresponding amplitude and chirp graphs for specific physical parameters, which aid in understanding the propagation characteristics of chirped solutions in optical metamaterials.</p></div>\",\"PeriodicalId\":584,\"journal\":{\"name\":\"Indian Journal of Physics\",\"volume\":\"99 6\",\"pages\":\"2217 - 2229\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12648-024-03425-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-024-03425-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于非线性Schrödinger方程,研究了光孤子在非线性超材料中传播的动力学模型的精确非线性啁啾。利用试方程法和多项式法的完全判别系统构造了暗孤子、亮孤子、扭孤子、反扭孤子、Jacobi椭圆函数解以及奇异有理和奇异双周期解。值得注意的是,我们得到了扭结孤子、反扭结孤子和Jacobi椭圆函数形式的新解。因此,我们提供了所有解决方案的全面分类,以及确定其存在的参数需求。此外,我们还得到了特定物理参数对应的振幅和啁啾图,这有助于理解啁啾解在光学超材料中的传播特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of chirped solutions in optical metamaterials having parabolic law nonlinearity and space-time dispersion

Based on the nonlinear Schrödinger equation, we investigate the exact nonlinear chirps of the dynamic model for the propagation of optical solitons in nonlinear metamaterials. The trial equation method and the complete discrimination system for polynomial method are utilized to construct dark soliton, bright soliton, kink soliton, anti-kink soliton, Jacobi elliptic function solutions, as well as singular rational and singular biperiodic solutions. Notably, we have derived new solutions in the forms of the kink soliton, anti-kink soliton, and Jacobi elliptic function. Therefore, we provide a comprehensive categorization of all solutions, along with the parameter requirements for determining their existence. Furthermore, we also receive corresponding amplitude and chirp graphs for specific physical parameters, which aid in understanding the propagation characteristics of chirped solutions in optical metamaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信