Frontiers of Materials Science最新文献

筛选
英文 中文
Synergistic effect of diethylene triamine penta(methylene phosphonic acid) and graphene oxide barrier on anti-scaling and anti-corrosion performance of superhydrophobic coatings 二乙烯三胺五(亚甲基膦酸)和氧化石墨烯阻隔层对超疏水涂料抗结垢和防腐性能的协同作用
IF 2.7 4区 材料科学
Frontiers of Materials Science Pub Date : 2023-06-29 DOI: 10.1007/s11706-023-0650-z
Mingliang Zhu, Hongwei Li, Ruixia Yuan, Huijuan Qian, Huaiyuan Wang
{"title":"Synergistic effect of diethylene triamine penta(methylene phosphonic acid) and graphene oxide barrier on anti-scaling and anti-corrosion performance of superhydrophobic coatings","authors":"Mingliang Zhu,&nbsp;Hongwei Li,&nbsp;Ruixia Yuan,&nbsp;Huijuan Qian,&nbsp;Huaiyuan Wang","doi":"10.1007/s11706-023-0650-z","DOIUrl":"10.1007/s11706-023-0650-z","url":null,"abstract":"<div><p>In this study, a novel diethylene triamine penta(methylene phosphonic acid) (DTPMPA)- and graphene oxide (GO)-modified superhydrophobic anodized aluminum (DGSAA) coating was fabricated. The obtained coatings were characterized by scan electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman analysis. After immersion in the supersaturated CaCO<sub>3</sub> solution for 240 h, the scaling mass of the DGSAA coating is only 50% of that of the SAA coating. The excellent anti-scaling performance of the DGSAA coating comes from three barriers of the air layer, the DTPMPA:Ca<sup>2+</sup> chelate, and the lamellar GO, as well as the further active anti-scaling of DTPMPA:Ca<sup>2+</sup> at the coating-solution interface. DTPMPA and GO at the surface of the DGSAA coating exhibit an insertion structure. In the electrochemical impedance spectroscopy measurement, the impedance modulus of the DGSAA coating is three orders-of-magnitude higher than that of the anodized aluminum. The synergistic effect of DTPMPA stored in the porous structure of anodized aluminum and the barrier protection of superhydrophobicity and GO contributes to the excellent comprehensive performance of the DGSAA coating. This research provides a new perspective for designing anti-scaling and anti-corrosion superhydrophobic bi-functional coatings.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5119121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries 高容量快充锂离子电池中具有快速电容机制的非晶锡修饰氮掺杂多孔碳纳米片
IF 2.7 4区 材料科学
Frontiers of Materials Science Pub Date : 2023-06-23 DOI: 10.1007/s11706-023-0651-y
Chong Xu, Guang Ma, Wang Yang, Sai Che, Neng Chen, Ni Wu, Bo Jiang, Ye Wang, Yankun Sun, Sijia Liao, Jiahao Yang, Xiang Li, Guoyong Huang, Yongfeng Li
{"title":"Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries","authors":"Chong Xu,&nbsp;Guang Ma,&nbsp;Wang Yang,&nbsp;Sai Che,&nbsp;Neng Chen,&nbsp;Ni Wu,&nbsp;Bo Jiang,&nbsp;Ye Wang,&nbsp;Yankun Sun,&nbsp;Sijia Liao,&nbsp;Jiahao Yang,&nbsp;Xiang Li,&nbsp;Guoyong Huang,&nbsp;Yongfeng Li","doi":"10.1007/s11706-023-0651-y","DOIUrl":"10.1007/s11706-023-0651-y","url":null,"abstract":"<div><p>Sn-based materials are considered as a kind of potential anode materials for lithium-ion batteries (LIBs) owing to their high theoretical capacity. However, their use is limited by large volume expansion deriving from the lithiation/delithiation process. In this work, amorphous Sn modified nitrogen-doped porous carbon nanosheets (ASn-NPCNs) are obtained. The synergistic effect of amorphous Sn and high edge-nitrogen-doped level porous carbon nanosheets provides ASn-NPCNs with multiple advantages containing abundant defect sites, high specific surface area (214.9 m<sup>2</sup>·g<sup>−</sup><sup>1</sup>), and rich hierarchical pores, which can promote the lithium-ion storage. Serving as the LIB anode, the as-prepared ASn-NPCNs-750 electrode exhibits an ultrahigh capacity of 1643 mAh·g<sup>−</sup><sup>1</sup> at 0.1 A·g<sup>−</sup><sup>1</sup>, ultrafast rate performance of 490 mAh·g<sup>−</sup><sup>1</sup> at 10 A·g<sup>−</sup><sup>1</sup>, and superior long-term cycling performance of 988 mAh·g<sup>−</sup><sup>1</sup> at 1 A·g<sup>−</sup><sup>1</sup> after 2000 cycles with a capacity retention of 98.9%. Furthermore, the in-depth electrochemical kinetic test confirms that the ultrahigh-capacity and fast-charging performance of the ASn-NPCNs-750 electrode is ascribed to the rapid capacitive mechanism. These impressive results indicate that ASn-NPCNs-750 can be a potential anode material for high-capacity and fast-charging LIBs.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4902568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of glycidyl methacrylate-modified silk fibroin/poly(L-lactic acid-co-ε-caprolactone)–polyethylene glycol diacrylate hybrid 3D nanofibrous scaffolds for tissue engineering 甲基丙烯酸缩水甘油酯-改性丝素/聚(l -乳酸-co-ε-己内酯)-聚乙二醇二丙烯酸酯杂化三维纳米纤维支架的制备
IF 2.7 4区 材料科学
Frontiers of Materials Science Pub Date : 2023-05-26 DOI: 10.1007/s11706-023-0647-7
Yongyong Fan, Anlin Yin, Yunhuan Li, Qi Gu, Yan Zhou, Junlong Zhou, Ruibo Zhao, Kuihua Zhang
{"title":"Fabrication of glycidyl methacrylate-modified silk fibroin/poly(L-lactic acid-co-ε-caprolactone)–polyethylene glycol diacrylate hybrid 3D nanofibrous scaffolds for tissue engineering","authors":"Yongyong Fan,&nbsp;Anlin Yin,&nbsp;Yunhuan Li,&nbsp;Qi Gu,&nbsp;Yan Zhou,&nbsp;Junlong Zhou,&nbsp;Ruibo Zhao,&nbsp;Kuihua Zhang","doi":"10.1007/s11706-023-0647-7","DOIUrl":"10.1007/s11706-023-0647-7","url":null,"abstract":"<div><p>In order to provide a biomimetic natural extracellular matrix microenvironment with excellent mechanical capacity for tissue regeneration, a novel porous hybrid glycidyl methacrylate-modified silk fibroin/poly(L-lactic acid-ε-caprolactone)-polyethylene glycol diacrylate (SFMA/P(LLA-CL)-PEGDA) hybrid three-dimensional (3D) nanofibrous scaffolds was successfully fabricated through the combination of 3D nanofibrous platforms and divinyl PEGDA based photocrosslinking, and then further improved water resistance by ethanol vapor post-treatment. Scanning electron microscopy and micro-computed tomography results demonstrated significant PEGDA hydrogel-like matrices bonded nanofibers, which formed a 3D structure similar to that of “steel bar (nanofibers)–cement (PEGDA)”, with proper pore size, high porosity, and high pore connectivity density. Meanwhile, the hybrid 3D nanofibrous scaffolds showed outstanding swelling properties as well as improved compressive and tensile properties. Furthermore, these hybrid 3D nanofibrous scaffolds could provide a biocompatible microenvironment, capable of inducing the material–cell hybrid and regulating human umbilical vein endothelial cells proliferation. They thus present significant potential in tissue regeneration.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5016872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Enhanced catalytic activity and thermal stability by highly dispersed Pd-based nanocatalysts embedded in ZrO2 hollow spheres 高度分散的钯基纳米催化剂包埋在ZrO2空心球中,提高了催化活性和热稳定性
IF 2.7 4区 材料科学
Frontiers of Materials Science Pub Date : 2023-05-26 DOI: 10.1007/s11706-023-0649-5
Tianli Liu, Jian Zhang, Mingjie Xu, Chuanjin Tian, Chang-An Wang
{"title":"Enhanced catalytic activity and thermal stability by highly dispersed Pd-based nanocatalysts embedded in ZrO2 hollow spheres","authors":"Tianli Liu,&nbsp;Jian Zhang,&nbsp;Mingjie Xu,&nbsp;Chuanjin Tian,&nbsp;Chang-An Wang","doi":"10.1007/s11706-023-0649-5","DOIUrl":"10.1007/s11706-023-0649-5","url":null,"abstract":"<div><p>Sintering resistant noble metal nanoparticles are critical to the development of advanced catalysts with high activity and stability. Herein, we reported the construction of highly dispersed Pd nanoparticles loaded at the inner wall of ZrO<sub>2</sub> hollow spheres (Pd@HS-ZrO<sub>2</sub>), which shows improved activity and thermal stability over references in the Pd-ZrO<sub>2</sub> (catalyst-support) system. Even after 800 °C high temperature calcination, the Pd nanoparticles and ZrO<sub>2</sub> hollow spheres did not undergo morphological changes. The Pd@HS-ZrO<sub>2</sub> manifests batter catalytic activity and thermal stability than the counterpart Pd/ZrO<sub>2</sub> catalysts. In comparison to Pd/ZrO<sub>2</sub>-800, Pd@ZrO<sub>2</sub>-800 exhibits a 25°C reduction in the temperature required for complete conversion of CO. The enhanced catalytic activity and thermal stability of Pd@HS-ZrO<sub>2</sub> can be attributed to the nanoconfinement effect offered by the 10 nm wall thickness of the ZrO<sub>2</sub> hollow spheres, which suppresses the coarsening of the Pd nanoparticles (active center for catalysis).</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5016713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realization of solid-state red fluorescence and concentration-induced multicolor emission from N, B co-doped carbon dots N, B共掺杂碳点固态红色荧光和浓度诱导多色发射的实现
IF 2.7 4区 材料科学
Frontiers of Materials Science Pub Date : 2023-05-26 DOI: 10.1007/s11706-023-0648-6
Junli Wang, Jingxia Zheng, Pinyi He, Qiang Li, Yongzhen Yang, Xuguang Liu, Juanzhi Yan, Yi Zhang
{"title":"Realization of solid-state red fluorescence and concentration-induced multicolor emission from N, B co-doped carbon dots","authors":"Junli Wang,&nbsp;Jingxia Zheng,&nbsp;Pinyi He,&nbsp;Qiang Li,&nbsp;Yongzhen Yang,&nbsp;Xuguang Liu,&nbsp;Juanzhi Yan,&nbsp;Yi Zhang","doi":"10.1007/s11706-023-0648-6","DOIUrl":"10.1007/s11706-023-0648-6","url":null,"abstract":"<div><p>As a new type of luminescent material, carbon dots (CDs) have attracted increased attention for their superior optical properties in recent years. However, solid-state fluorescent CDs, especially with red emission, are still a major challenge. Here, CDs with solid-state red emission were synthesized by co-doping of N and B using the one-step microwave method. The CD powder exhibits excitation-independent solid-state red fluorescence without any dispersion matrices, with optimum solid-state fluorescence wavelength of 623 nm. The hydrogen bonding interaction in CDs is helpful for solid-state fluorescence of CDs. The <sub>I</sub><sub>G</sub>/<sub>I</sub><sub>D</sub> value of CDs reaches up to 3.49, suggesting their very high graphitization degree, which is responsible for their red emission. In addition, CDs show the concentration-induced multicolor emission, which is attributed to the decreased energy gap in the high concentrated CD solution. To exploit their concentration-dependent emission, CDs with changing ratio in matrices are applied as a color-converting layer on ultraviolet chip to fabricate multicolor light-emitting diodes with light coordinates of (0.33, 0.38), (0.41, 0.48), (0.49, 0.44), and (0.67, 0.33), which belong to green, yellow, orange, and red light, respectively.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5019638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing component synergy of Ni–Fe/black phosphorous composites synthesized by self-designed electrochemical method for enhancing photoelectrocatalytic oxygen evolution reaction 揭示自行设计的电化学方法合成的Ni-Fe /黑磷复合材料的组分协同作用,以增强光电催化析氧反应
IF 2.7 4区 材料科学
Frontiers of Materials Science Pub Date : 2023-05-06 DOI: 10.1007/s11706-023-0646-8
He Xiao, Shoufeng Xue, Zimei Fu, Man Zhao, Li Zhang, Junming Zhang, Haishun Wu, Jianfeng Jia, Nianjun Yang
{"title":"Revealing component synergy of Ni–Fe/black phosphorous composites synthesized by self-designed electrochemical method for enhancing photoelectrocatalytic oxygen evolution reaction","authors":"He Xiao,&nbsp;Shoufeng Xue,&nbsp;Zimei Fu,&nbsp;Man Zhao,&nbsp;Li Zhang,&nbsp;Junming Zhang,&nbsp;Haishun Wu,&nbsp;Jianfeng Jia,&nbsp;Nianjun Yang","doi":"10.1007/s11706-023-0646-8","DOIUrl":"10.1007/s11706-023-0646-8","url":null,"abstract":"<div><p>Developing high-activity and low-cost catalysts is the key to eliminate the limitation of sluggish anodic oxygen evolution reaction (OER) during electrocatalytic overall water splitting. Herein, Ni–Fe/black phosphorous (BP) composites are synthesized using a simple three-electrode system, where exfoliation of bulky BP and synthesis of NiFe composites are simultaneously achieved. Under light illumination, the optimized Ni–Fe/BP composite exhibits excellent photoelectrocatalytic OER performance (e.g., the overpotential is 58 mV lower than a commercial RuO<sub>2</sub> electrocatalyst at a current density of 10 mA·cm<sup>−2</sup>). The electron transfer on this composite is proved to follow a Ni–BP–Fe pathway. The electronic structure of this Ni–Fe/BP composite is effectively regulated, leading to optimized adsorption strength of the intermediate OH* and improved intrinsic activity for the OER. Together with active sites on the support, this Ni–Fe/BP composite possesses abundant electrochemical active sites and a bug surface area for the OER. The introduction of light further accelerates the electrocatalytic OER. This work provides a novel and facile method to synthesize high-performance metal/BP composites as well as the approaches to reveal their OER mechanisms.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4267955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile fabrication of superior antibacterial cotton fabric based on ZnO nanoparticles/quaternary ammonium salts hybrid composites and mechanism study 纳米氧化锌/季铵盐杂化复合材料制备高效抗菌棉织物及其机理研究
IF 2.7 4区 材料科学
Frontiers of Materials Science Pub Date : 2023-05-06 DOI: 10.1007/s11706-023-0643-y
Yechen Hu, Lin Zhang, Yafeng Huang, Xiufang Chen, Fengtao Chen, Wangyang Lu
{"title":"Facile fabrication of superior antibacterial cotton fabric based on ZnO nanoparticles/quaternary ammonium salts hybrid composites and mechanism study","authors":"Yechen Hu,&nbsp;Lin Zhang,&nbsp;Yafeng Huang,&nbsp;Xiufang Chen,&nbsp;Fengtao Chen,&nbsp;Wangyang Lu","doi":"10.1007/s11706-023-0643-y","DOIUrl":"10.1007/s11706-023-0643-y","url":null,"abstract":"<div><p>In the research for the safe and efficiently antibacterial cotton fabrics to minimize risk for human health, an organic–inorganic hybrid material of ZnO nanoparticles (NPs) and quaternary ammonium salt (QAS) was employed to modify cotton fabrics by a dipping–padding–drying method. The synergistic effects of ZnO NPs and QAS on the structure and antibacterial properties of cotton fabrics were studied in detail. Results displayed that the QAS and ZnO NPs were immobilized firmly in cotton fabric by the formation of chemical covalent bonds and silica gel structure. ZnO/QAS/cotton had a good inhibitory effect on the growth of <i>E. coli</i> and <i>S. aureus</i>, with superior antibacterial efficiency of &gt;99.99%. ZnO/QAS/cotton preserved good mechanical property, water absorbability, and limpness. We also provided a detailed analysis of antibacterial mechanism for the hybrid materials. The contact mechanism and the Zn<sup>2+</sup> release were considered as the main mechanisms for the ZnO/QAS/cotton, while the reactive oxygen species (ROS) generation only had a little contribution to the antibacterial activity. In short, the excellent integrated properties endowed the hybrid cotton fabrics as potential application in many fields, like healthcare, food packaging.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4271702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Robust Co3O4 nanocatalysts supported on biomass-derived porous N-doped carbon toward low-pressure hydrogenation of furfural 生物质衍生多孔n掺杂碳负载的Co3O4纳米催化剂用于糠醛的低压加氢
IF 2.7 4区 材料科学
Frontiers of Materials Science Pub Date : 2023-05-03 DOI: 10.1007/s11706-023-0645-9
Lin Zhang, Lanlan Cheng, Yechen Hu, Qingguang Xiao, Xiufang Chen, Wangyang Lu
{"title":"Robust Co3O4 nanocatalysts supported on biomass-derived porous N-doped carbon toward low-pressure hydrogenation of furfural","authors":"Lin Zhang,&nbsp;Lanlan Cheng,&nbsp;Yechen Hu,&nbsp;Qingguang Xiao,&nbsp;Xiufang Chen,&nbsp;Wangyang Lu","doi":"10.1007/s11706-023-0645-9","DOIUrl":"10.1007/s11706-023-0645-9","url":null,"abstract":"<div><p>The catalytic conversion of biomass platform chemicals using abundant non-noble metal nanocatalysts is a challenging topic. Here, high-density cobalt oxide nanoparticles loaded on biomass-derived porous N-doped carbon (NC) was fabricated by a tandem hydrothermal pyrolysis and mild nitrate decomposition process, which is a green and cheap preparation method. The Co<sub>3</sub>O<sub>4</sub> nanoparticles with the average size of 12 nm were uniformly distributed on the porous NC. The nanocomposites also possessed large surface area, high N content, good dispersibility in isopropanol, and furfural absorbability. Due to these characteristics, the novel cobalt nanocatalyst exhibited high catalytic activity for producing furfuryl alcohol, yielding 98.7% of the conversion and 97.1% of the selectivity at 160 °C for 6 h under 1 bar H<sub>2</sub>. The control experiments implied that both direct hydrogenation and transfer hydrogenation pathways co-existed in the hydrogenation reaction. The excellent catalytic activity of Co<sub>3</sub>O<sub>4</sub>@NC was attributed to the cooperative effects of porous NC and Co<sub>3</sub>O<sub>4</sub> nanoparticles. This approach provides a new idea to design effective high-density nonnoble metal oxide nanocatalysts for hydrogenation reactions, which can make full use of sustainable natural biomass.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4136779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Three-dimensional printing of biomaterials for bone tissue engineering: a review 骨组织工程生物材料三维打印研究进展
IF 2.7 4区 材料科学
Frontiers of Materials Science Pub Date : 2023-04-28 DOI: 10.1007/s11706-023-0644-x
Ahmed El-Fiqi
{"title":"Three-dimensional printing of biomaterials for bone tissue engineering: a review","authors":"Ahmed El-Fiqi","doi":"10.1007/s11706-023-0644-x","DOIUrl":"10.1007/s11706-023-0644-x","url":null,"abstract":"<div><p>Processing biomaterials into porous scaffolds for bone tissue engineering is a critical and a key step in defining and controlling their physicochemical, mechanical, and biological properties. Biomaterials such as polymers are commonly processed into porous scaffolds using conventional processing techniques, e.g., salt leaching. However, these traditional techniques have shown unavoidable limitations and several shortcomings. For instance, tissue-engineered porous scaffolds with a complex three-dimensional (3D) geometric architecture mimicking the complexity of the extracellular matrix of native tissues and with the ability to fit into irregular tissue defects cannot be produced using the conventional processing techniques. 3D printing has recently emerged as an advanced processing technology that enables the processing of biomaterials into 3D porous scaffolds with highly complex architectures and tunable shapes to precisely fit into irregular and complex tissue defects. 3D printing provides computer-based layer-by-layer additive manufacturing processes of highly precise and complex 3D structures with well-defined porosity and controlled mechanical properties in a highly reproducible manner. Furthermore, 3D printing technology provides an accurate patient-specific tissue defect model and enables the fabrication of a patient-specific tissue-engineered porous scaffold with pre-customized properties.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5067211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Microbial reduction of graphene oxide and its application in microbial fuel cells and biophotovoltaics 氧化石墨烯的微生物还原及其在微生物燃料电池和生物光伏中的应用
IF 2.7 4区 材料科学
Frontiers of Materials Science Pub Date : 2023-04-20 DOI: 10.1007/s11706-023-0642-z
Jing-Ye Tee, Fong-Lee Ng, Fiona Seh-Lin Keng, G. Gnana kumar, Siew-Moi Phang
{"title":"Microbial reduction of graphene oxide and its application in microbial fuel cells and biophotovoltaics","authors":"Jing-Ye Tee,&nbsp;Fong-Lee Ng,&nbsp;Fiona Seh-Lin Keng,&nbsp;G. Gnana kumar,&nbsp;Siew-Moi Phang","doi":"10.1007/s11706-023-0642-z","DOIUrl":"10.1007/s11706-023-0642-z","url":null,"abstract":"<div><p>Despite more than a decade of study, there are still significant obstacles to overcome before graphene can be successfully produced on a large scale for commercial use. Chemical oxidation of graphite to produce graphene oxide (GO), followed by a subsequent reduction process to synthesize reduced graphene oxide (rGO), is considered the most practical method for mass production. Microorganisms, which are abundant in nature and inexpensive, are one of the potential green reductants for rGO synthesis. However, there is no recent review discussing the reported microbial reduction of GO in detail. To address this, we present a comprehensive review on the reduction of GO by a range of microorganisms and compared their efficacies and reaction conditions. Also, presented were the mechanisms by which microorganisms reduce GO. We also reviewed the recent advancements in using microbially reduced GO as the anode and cathode material in the microbial fuel cell (MFC) and algal biophotovoltaics (BPV), as well as the challenges and future directions in microbial fuel cell research.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4777906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信