Hang Zhang, Shu Cai, Huanlin Zhang, Lei Ling, You Zuo, Hao Tian, Tengfei Meng, Guohua Xu, Xiaogang Bao, Mintao Xue
{"title":"兼具耐腐蚀性和抑菌性的 AZ31 镁合金羟基磷灰石/棕榈酸超疏水复合涂层","authors":"Hang Zhang, Shu Cai, Huanlin Zhang, Lei Ling, You Zuo, Hao Tian, Tengfei Meng, Guohua Xu, Xiaogang Bao, Mintao Xue","doi":"10.1007/s11706-024-0678-8","DOIUrl":null,"url":null,"abstract":"<div><p>The coating-modified magnesium (Mg) alloys exhibit controllable corrosion resistance, but the insufficient antibacterial performance limits their clinical applications as degradable implants. Superhydrophobic coatings show excellent performance in terms of both corrosion resistance and inhibition of bacterial adhesion and growth. In this work, a hydroxyapatite (HA)/palmitic acid (PA) superhydrophobic composite coating was fabricated on the Mg alloy by the hydrothermal technique and immersion treatment. The HA/PA composite coating showed superhydrophobicity with a contact angle of 153° and a sliding angle of 2°. The coated Mg alloy exhibited excellent corrosion resistance in the simulated body fluid, with high polarization resistance (77.10 kΩ·cm<sup>2</sup>) and low corrosion current density ((0.491 ± 0.015) µA·cm<sup>−2</sup>). Meanwhile, the antibacterial efficiency of the composite coating was over 98% against <i>E. coli</i> and <i>S. aureus</i> in different periods. The results indicate that the construction of such superhydrophobic composite coating (HA/PA) on the Mg alloy can greatly improve the corrosion resistance of Mg alloy implants within the human body and avoid bacterial infection during the initial stages of implantation.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydroxyapatite/palmitic acid superhydrophobic composite coating on AZ31 magnesium alloy with both corrosion resistance and bacterial inhibition\",\"authors\":\"Hang Zhang, Shu Cai, Huanlin Zhang, Lei Ling, You Zuo, Hao Tian, Tengfei Meng, Guohua Xu, Xiaogang Bao, Mintao Xue\",\"doi\":\"10.1007/s11706-024-0678-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The coating-modified magnesium (Mg) alloys exhibit controllable corrosion resistance, but the insufficient antibacterial performance limits their clinical applications as degradable implants. Superhydrophobic coatings show excellent performance in terms of both corrosion resistance and inhibition of bacterial adhesion and growth. In this work, a hydroxyapatite (HA)/palmitic acid (PA) superhydrophobic composite coating was fabricated on the Mg alloy by the hydrothermal technique and immersion treatment. The HA/PA composite coating showed superhydrophobicity with a contact angle of 153° and a sliding angle of 2°. The coated Mg alloy exhibited excellent corrosion resistance in the simulated body fluid, with high polarization resistance (77.10 kΩ·cm<sup>2</sup>) and low corrosion current density ((0.491 ± 0.015) µA·cm<sup>−2</sup>). Meanwhile, the antibacterial efficiency of the composite coating was over 98% against <i>E. coli</i> and <i>S. aureus</i> in different periods. The results indicate that the construction of such superhydrophobic composite coating (HA/PA) on the Mg alloy can greatly improve the corrosion resistance of Mg alloy implants within the human body and avoid bacterial infection during the initial stages of implantation.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-024-0678-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0678-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydroxyapatite/palmitic acid superhydrophobic composite coating on AZ31 magnesium alloy with both corrosion resistance and bacterial inhibition
The coating-modified magnesium (Mg) alloys exhibit controllable corrosion resistance, but the insufficient antibacterial performance limits their clinical applications as degradable implants. Superhydrophobic coatings show excellent performance in terms of both corrosion resistance and inhibition of bacterial adhesion and growth. In this work, a hydroxyapatite (HA)/palmitic acid (PA) superhydrophobic composite coating was fabricated on the Mg alloy by the hydrothermal technique and immersion treatment. The HA/PA composite coating showed superhydrophobicity with a contact angle of 153° and a sliding angle of 2°. The coated Mg alloy exhibited excellent corrosion resistance in the simulated body fluid, with high polarization resistance (77.10 kΩ·cm2) and low corrosion current density ((0.491 ± 0.015) µA·cm−2). Meanwhile, the antibacterial efficiency of the composite coating was over 98% against E. coli and S. aureus in different periods. The results indicate that the construction of such superhydrophobic composite coating (HA/PA) on the Mg alloy can greatly improve the corrosion resistance of Mg alloy implants within the human body and avoid bacterial infection during the initial stages of implantation.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.