{"title":"霍洛石纳米管内外负载的 Fe3O4 催化的 Fenton 类反应在去除有机污染物方面的比较研究","authors":"Yang Li, Jia-Qi Zhou, Huan-Yan Xu, Li-Min Dong, Mao-Chang Cao, Lian-Wei Shan, Li-Guo Jin, Xiu-Lan He, Shu-Yan Qi","doi":"10.1007/s11706-024-0673-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, Fe<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) loaded inside and outside halloysite nanotubes (HNTs) were prepared and developed as the heterogeneous Fenton-like catalysts for the removal of representative organic pollutants. Characterization results indicated that the samples with Fe<sub>3</sub>O<sub>4</sub> NPs loaded outside the HNTs lumen (Fe<sub>3</sub>O<sub>4</sub>/HNTs) and inside the HNTs lumen (Fe<sub>3</sub>O<sub>4</sub>@HNTs) were successfully prepared. Both samples had typical magnetic hysteresis loops, while Fe<sub>3</sub>O<sub>4</sub>@HNTs exhibited higher magnetization intensity. The comparative experiments showed that Fe<sub>3</sub>O<sub>4</sub>@HNTs had better Fenton-like catalytic ability than that of Fe<sub>3</sub>O<sub>4</sub>/HNTs in the degradation of various organic pollutants. Taking Rhodamine B (RhB) as an example, the adsorption thermodynamics and kinetics of RhB onto Fe<sub>3</sub>O<sub>4</sub>/HNTs and Fe<sub>3</sub>O<sub>4</sub>@HNTs were also investigated. The comparative results demonstrated that the adsorption ability of Fe<sub>3</sub>O<sub>4</sub>/HNTs was better than that of Fe<sub>3</sub>O<sub>4</sub>@HNTs. Moreover, the dissolved concentration of Fe<sup>2+</sup> and production amount of hydroxyl radical (·OH) in the Fe<sub>3</sub>O<sub>4</sub>@HNTs-H<sub>2</sub>O<sub>2</sub> system were significantly higher than those in the Fe<sub>3</sub>O<sub>4</sub>/HNTs-H<sub>2</sub>O<sub>2</sub> system. Based on aforementioned comparison, the nano-confinement effect in the Fe<sub>3</sub>O<sub>4</sub>@HNTs-H<sub>2</sub>O<sub>2</sub> system was verified. This work provides meaningful guidance for the cheap and convenient design of nanoreactors for Fenton-like applications.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative studies on Fenton-like reactions catalyzed by Fe3O4 loaded inside and outside halloysite nanotubes for the removal of organic pollutants\",\"authors\":\"Yang Li, Jia-Qi Zhou, Huan-Yan Xu, Li-Min Dong, Mao-Chang Cao, Lian-Wei Shan, Li-Guo Jin, Xiu-Lan He, Shu-Yan Qi\",\"doi\":\"10.1007/s11706-024-0673-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, Fe<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) loaded inside and outside halloysite nanotubes (HNTs) were prepared and developed as the heterogeneous Fenton-like catalysts for the removal of representative organic pollutants. Characterization results indicated that the samples with Fe<sub>3</sub>O<sub>4</sub> NPs loaded outside the HNTs lumen (Fe<sub>3</sub>O<sub>4</sub>/HNTs) and inside the HNTs lumen (Fe<sub>3</sub>O<sub>4</sub>@HNTs) were successfully prepared. Both samples had typical magnetic hysteresis loops, while Fe<sub>3</sub>O<sub>4</sub>@HNTs exhibited higher magnetization intensity. The comparative experiments showed that Fe<sub>3</sub>O<sub>4</sub>@HNTs had better Fenton-like catalytic ability than that of Fe<sub>3</sub>O<sub>4</sub>/HNTs in the degradation of various organic pollutants. Taking Rhodamine B (RhB) as an example, the adsorption thermodynamics and kinetics of RhB onto Fe<sub>3</sub>O<sub>4</sub>/HNTs and Fe<sub>3</sub>O<sub>4</sub>@HNTs were also investigated. The comparative results demonstrated that the adsorption ability of Fe<sub>3</sub>O<sub>4</sub>/HNTs was better than that of Fe<sub>3</sub>O<sub>4</sub>@HNTs. Moreover, the dissolved concentration of Fe<sup>2+</sup> and production amount of hydroxyl radical (·OH) in the Fe<sub>3</sub>O<sub>4</sub>@HNTs-H<sub>2</sub>O<sub>2</sub> system were significantly higher than those in the Fe<sub>3</sub>O<sub>4</sub>/HNTs-H<sub>2</sub>O<sub>2</sub> system. Based on aforementioned comparison, the nano-confinement effect in the Fe<sub>3</sub>O<sub>4</sub>@HNTs-H<sub>2</sub>O<sub>2</sub> system was verified. This work provides meaningful guidance for the cheap and convenient design of nanoreactors for Fenton-like applications.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-024-0673-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0673-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative studies on Fenton-like reactions catalyzed by Fe3O4 loaded inside and outside halloysite nanotubes for the removal of organic pollutants
In this work, Fe3O4 nanoparticles (NPs) loaded inside and outside halloysite nanotubes (HNTs) were prepared and developed as the heterogeneous Fenton-like catalysts for the removal of representative organic pollutants. Characterization results indicated that the samples with Fe3O4 NPs loaded outside the HNTs lumen (Fe3O4/HNTs) and inside the HNTs lumen (Fe3O4@HNTs) were successfully prepared. Both samples had typical magnetic hysteresis loops, while Fe3O4@HNTs exhibited higher magnetization intensity. The comparative experiments showed that Fe3O4@HNTs had better Fenton-like catalytic ability than that of Fe3O4/HNTs in the degradation of various organic pollutants. Taking Rhodamine B (RhB) as an example, the adsorption thermodynamics and kinetics of RhB onto Fe3O4/HNTs and Fe3O4@HNTs were also investigated. The comparative results demonstrated that the adsorption ability of Fe3O4/HNTs was better than that of Fe3O4@HNTs. Moreover, the dissolved concentration of Fe2+ and production amount of hydroxyl radical (·OH) in the Fe3O4@HNTs-H2O2 system were significantly higher than those in the Fe3O4/HNTs-H2O2 system. Based on aforementioned comparison, the nano-confinement effect in the Fe3O4@HNTs-H2O2 system was verified. This work provides meaningful guidance for the cheap and convenient design of nanoreactors for Fenton-like applications.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.