{"title":"Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal of acid red 134","authors":"Xiuzhi Tian, Rui Yang, Chuanyin Xiong, Haibo Deng, Yonghao Ni, Xue Jiang","doi":"10.1007/s11705-022-2256-x","DOIUrl":"10.1007/s11705-022-2256-x","url":null,"abstract":"<div><p>The discharge of large amounts of dye-containing wastewater seriously threats the environment. Adsorbents have been adopted to remove these dyes present in the wastewater. However, the high adsorption capacity, predominant pH-responsibility, and excellent recyclability are three challenges to the development of efficient adsorbents. The poly(acryloxyethyl trimethylammonium chloride)-graft-dialdehyde cellulose nanocrystals were synthesized in our work. Subsequently, the cationic dialdehyde cellulose nanocrystal cross-linked chitosan nanocomposite foam was fabricated via freeze-drying of the hydrogel. Under the optimal ratio of the cationic dialdehyde cellulose nanocrystal/chitosan (w/w) of 12/100, the resultant foam (Foam-12) possesses excellent absorption properties, such as high porosity, high content of active sites, strong acid resistance, and high amorphous region. Then, Foam-12 was applied as an eco-friendly adsorbent to remove acid red 134 (a representative of anionic dyes) from aqueous solutions. The maximum dye adsorption capacity of 1238.1 mg·g<sup>−1</sup> is achieved under the conditions of 20 mg·L<sup>−1</sup> adsorbents, 100 mg·L<sup>−1</sup> dye, pH 3.5, 24 h, and 25 °C. The dominant adsorption mechanism for the anionic dye adsorption is electrostatic attraction, and Foam-12 can effectively adsorb acid red 134 at pH 2.5–5.5 and be desorbed at pH 8. Its easy recovery and good reusability are verified by the repeated acid adsorption-alkaline desorption experiments.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 7","pages":"853 - 866"},"PeriodicalIF":4.5,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4549282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films with enhanced electrocatalytic ability for rutin and luteolin determination","authors":"Rongqian Meng, Jianke Tang, Hong Yang, Lijun Guo, Yongbo Song, Qiaoling Li, Yulan Niu","doi":"10.1007/s11705-022-2262-z","DOIUrl":"10.1007/s11705-022-2262-z","url":null,"abstract":"<div><p>In this study, a simple and effective method was proposed to improve the electrocatalytic ability of overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films modified on glassy carbon electrode for rutin and luteolin determination. The composite electrode was prepared by cyclic voltammetry copolymerization with LiClO<sub>4</sub>-water as the supporting electrolyte. The peak current of rutin and luteolin on the composite electrode gradually decreased or even disappeared with the increase in the positive potential limit. After incubation in NaOH-ethanol solution with a volume ratio of 1:1, the composite electrodes prepared at positive potential limit greater than 1.5 V exhibited enhanced differential pulse voltammetry peak currents, reduced charge transfer resistance, larger effective specific surface area and higher electron transfer rate constant. The composite electrode prepared in the potential range of 0–1.7 V showed optimal electrocatalytic performance. The X-ray photoelectron spectroscopy results indicated that the content of −SO<sub>2</sub>/−SO and −C=N− groups in the composite film increased significantly after incubation. Further, the Raman spectra and Fourier transform infrared spectra revealed that the thiophene ring structure changed from benzene-type to quinone-type, and the quinone-type pyrrole ring was formed. The electrocatalytic mechanism of the composite film was proposed based on the experimental results and further verified by Density Functional Theory calculation.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 6","pages":"735 - 748"},"PeriodicalIF":4.5,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4838866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Piezocatalytic performance of Fe2O3-Bi2MoO6 catalyst for dye degradation","authors":"Lili Cheng, Xiaoyao Yu, Danyao Huang, Hao Wang, Ying Wu","doi":"10.1007/s11705-022-2265-9","DOIUrl":"10.1007/s11705-022-2265-9","url":null,"abstract":"<div><p>A Fe<sub>2</sub>O<sub>3</sub>-Bi<sub>2</sub>MoO<sub>6</sub> heterojunction was synthesized via a hydrothermal method. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, powder X-ray diffraction, Fourier transform infrared spectroscopy and ultra-violet-visible near-infrared spectrometry were performed to measure the structures, morphologies and optical properties of the as-prepared samples. The various factors that affected the piezocatalytic property of composite catalyst were studied. The highest rhodamine B degradation rate of 96.6% was attained on the 3% Fe<sub>2</sub>O<sub>3</sub>-Bi<sub>2</sub>MoO<sub>6</sub> composite catalyst under 60 min of ultrasonic vibration. The good piezocatalytic activity was ascribed to the formation of a hierarchical flower-shaped microsphere structure and the heterostructure between Fe<sub>2</sub>O<sub>3</sub> and Bi<sub>2</sub>MoO<sub>6</sub>, which effectively separated the ultrasound-induced electron-hole pairs and suppressed their recombination. Furthermore, a potential piezoelectric catalytic dye degradation mechanism of the Fe<sub>2</sub>O<sub>3</sub>-Bi<sub>2</sub>MoO<sub>6</sub> catalyst was proposed based on the band potential and quenching effect of radical scavengers. The results demonstrated the potential of using Fe<sub>2</sub>O<sub>3</sub>-Bi<sub>2</sub>MoO<sub>6</sub> nanocomposites in piezocatalytic applications.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 6","pages":"716 - 725"},"PeriodicalIF":4.5,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4546823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lignin-based polymer with high phenolic hydroxyl group content prepared by the alkyl chain bridging method and applied as a dopant of PEDOT","authors":"Nanlong Hong, Jiahui Wang, Jinhua You","doi":"10.1007/s11705-022-2272-x","DOIUrl":"10.1007/s11705-022-2272-x","url":null,"abstract":"<div><p>Inspired by the importance of the phenolic group to the electron transporting property of hole transport materials, phenolic hydroxyl groups were introduced in lignosulfonate (LS) via the alkyl chain bridging method to prepare phenolated-lignosulfonate (PLS). The results showed that the phenolic group was boosted from 0.81 mmol·g<sup>?1</sup> of LS to 1.19 mmol·g<sup>?1</sup> of PLS. The electrochemical property results showed two oxidation peaks in the cyclic voltammogram (CV) curve of PLS, and the oxidation potential of the PLS-modified electrode decreased by 0.5 eV compared with that of LS. This result indicates that PLS is more easily oxidized than LS. Based on the excellent electron transporting property of PLS, PLS was applied as a dopant in poly(3,4-ethylenedioxythiophene) (PEDOT, called PEDOT:PLSs). PLS showed excellent dispersion properties for PEDOT. Moreover, the transmittance measurement results showed that the transmittance of PEDOT:PLSs exceeded 85% in the range of 300–800 nm. The CV results showed that the energy levels of PEDOT:PLSs could be flexibly adjusted by PLS amounts. The results indicate that the phenolic hydroxyl group of lignin can be easily boosted by the alkyl chain bridging method, and phenolated lignin-based polymers may have promising potential as dopants of PEDOT to produce hole transporting materials for different organic photovoltaic devices.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 8","pages":"1075 - 1084"},"PeriodicalIF":4.5,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4308611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exergy and exergoeconomic analyses for integration of aromatics separation with aromatics upgrading","authors":"Dan Zhang, Minbo Yang, Xiao Feng","doi":"10.1007/s11705-022-2192-9","DOIUrl":"10.1007/s11705-022-2192-9","url":null,"abstract":"<div><p>Methanol to aromatics produces multiple products, resulting in a limited selectivity of xylene. Aromatics upgrading is an effective way to produce more valuable xylene product, and different feed ratios generate discrepant product distributions. This work integrates the aromatics separation with toluene disproportionation, transalkylation of toluene and trimethylbenzene, and isomerization of xylene and trimethylbenzene. Exergy and exergoeconomic analyses are conducted to give insights in the splitting ratios of benzene, toluene and heavy aromatics for aromatics upgrading. First, a detailed simulation model is developed in Aspen HYSYS. Then, 300 splitting ratio sets of benzene and toluene for conversion are studied to investigate the process performances. The results indicate that there are different preferences for the splitting ratios of benzene and toluene in terms of exergy and exergoeconomic performances. The process generates lower total exergy destruction when the splitting ratio of toluene varies between 0.07 and 0.18, and that of benzene fluctuates between 0.55 and 0.6. Nevertheless, the process presents lower total product unit cost with the splitting ratio of toluene less than 0.18 and that of benzene fluctuating between 0.44 and 0.89. Besides, it is found that distillation is the biggest contributor to the total exergy destruction, accounting for 94.97%.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 2","pages":"183 - 193"},"PeriodicalIF":4.5,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4264905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Easily-manufactured paper-based materials with high porosity for adsorption/separation applications in complex wastewater","authors":"Shan Jiang, Jianfeng Xi, Hongqi Dai, Huining Xiao, Weibing Wu","doi":"10.1007/s11705-022-2267-7","DOIUrl":"10.1007/s11705-022-2267-7","url":null,"abstract":"<div><p>A multi-functional porous paper-based material was prepared from grass pulp by simple pore-forming and green cross-linking method. As a pore-forming agent, calcium citrate increased the porosity of the paper-based material from 30% to 69% while retaining the mechanical strength. The covalent cross-linking of citric acid between cellulose fibers improved both the wet strength and adsorption capacity. In addition, owing to the introduction of high-content carboxyl groups as well as the construction of hierarchical micro-nano structure, the underwater oil contact angle was up to 165°. The separation efficiency of the emulsified oil was 99.3%, and the water flux was up to 2020 L·m<sup>−2</sup>·h<sup>−1</sup>. The theoretical maximum adsorption capacities of cadmium ion, lead ion and methylene blue reached 136, 229 and 128.9 mg·g<sup>−1</sup>, respectively. The continuous purification of complex wastewater can be achieved by using paper-based materials combined with filtration technology. This work provides a simple, low cost and environmental approach for the treatment of complex wastewater containing insoluble oil, organic dyes, and heavy metal ions.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 7","pages":"830 - 839"},"PeriodicalIF":4.5,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4221632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruiqi Li, Kang Li, Wei Wang, Fan Zhang, Shichao Tian, Zhongqi Ren, Zhiyong Zhou
{"title":"Highly selective and green recovery of lithium ions from lithium iron phosphate powders with ozone","authors":"Ruiqi Li, Kang Li, Wei Wang, Fan Zhang, Shichao Tian, Zhongqi Ren, Zhiyong Zhou","doi":"10.1007/s11705-022-2261-0","DOIUrl":"10.1007/s11705-022-2261-0","url":null,"abstract":"<div><p>Since lithium iron phosphate cathode material does not contain high-value metals other than lithium, it is therefore necessary to strike a balance between recovery efficiency and economic benefits in the recycling of waste lithium iron phosphate cathode materials. Here, we describe a selective recovery process that can achieve economically efficient recovery and an acceptable lithium leaching yield. Adjusting the acid concentration and amount of oxidant enables selective recovery of lithium ions. Iron is retained in the leaching residue as iron phosphate, which is easy to recycle. The effects of factors such as acid concentration, acid dosage, amount of oxidant, and reaction temperature on the leaching of lithium and iron are comprehensively explored, and the mechanism of selective leaching is clarified. This process greatly reduces the cost of processing equipment and chemicals. This increases the potential industrial use of this process and enables the green and efficient recycling of waste lithium iron phosphate cathode materials in the future.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 6","pages":"749 - 758"},"PeriodicalIF":4.5,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4221651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient conversion of lignin to alkylphenols over highly stable inverse spinel MnFe2O4 catalysts","authors":"Yi Qi, Xuezhi Zeng, Lingyingzi Xiong, Xuliang Lin, Bowen Liu, Yanlin Qin","doi":"10.1007/s11705-022-2236-1","DOIUrl":"10.1007/s11705-022-2236-1","url":null,"abstract":"<div><p>The aromatic properties of lignin make it a promising source of valuable chemicals and fuels. Developing efficient and stable catalysts to effectively convert lignin into high-value chemicals is challenging. In this work, MnFe<sub>2</sub>O<sub>4</sub> spinel catalysts with oxygen-rich vacancies and porous distribution were synthesized by a simple solvothermal process and used to catalyze the depolymerization of lignin in an isopropanol solvent system. The specific surface area was 110.5 m<sup>2</sup>·g<sup>?1</sup>, which substantially increased the active sites for lignin depolymerization compared to Fe<sub>3</sub>O<sub>4</sub>. The conversion of lignin reached 94%, and the selectivity of alkylphenols exceeded 90% after 5 h at 250 °C. Underpinned by characterizations, products, and density functional theory analysis, the results showed that the catalytic performance of MnFe<sub>2</sub>O<sub>4</sub> was attributed to the composition of Mn and Fe with strong Mn-O-Fe synergy. In addition, the cycling experiments and characterization showed that the depolymerized lignin on MnFe<sub>2</sub>O<sub>4</sub> has excellent cycling stability. Thus, our work provides valuable insights into the mechanism of lignin catalytic depolymerization and paves the way for the industrial-scale application of this process.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 8","pages":"1085 - 1095"},"PeriodicalIF":4.5,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4221633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shangcong Zhang, Qian Liu, Xinyue Tang, Zhiming Zhou, Tieyan Fan, Yingmin You, Qingcheng Zhang, Shusheng Zhang, Jun Luo, Xijun Liu
{"title":"Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes","authors":"Shangcong Zhang, Qian Liu, Xinyue Tang, Zhiming Zhou, Tieyan Fan, Yingmin You, Qingcheng Zhang, Shusheng Zhang, Jun Luo, Xijun Liu","doi":"10.1007/s11705-022-2274-8","DOIUrl":"10.1007/s11705-022-2274-8","url":null,"abstract":"<div><p>Designing advanced and cost-effective electro-catalytic system for nitric oxide (NO) reduction reaction (NORR) is vital for sustainable NH<sub>3</sub> production and NO removal, yet it is a challenging task. Herein, it is shown that phosphorus (P)-doped titania (TiO<sub>2</sub>) nanotubes can be adopted as highly efficient catalyst for NORR. The catalyst demonstrates impressive performance in ionic liquid (IL)-based electrolyte with a remarkable high Faradaic efficiency of 89% and NH<sub>3</sub> yield rate of 425 µg·h<sup>−1</sup>·mg<sub>cat.</sub>−<sup>1</sup>, being close to the best-reported results. Noteworthy, the obtained performance metrics are significantly larger than those for N<sub>2</sub> reduction reaction. It also shows good durability with negligible activity decay even after 10 cycles. Theoretical simulations reveal that the introduction of P dopants tunes the electronic structure of Ti active sites, thereby enhancing the NO adsorption and facilitating the desorption of *NH<sub>3</sub>. Moreover, the utilization of IL further suppresses the competitive hydrogen evolution reaction. This study highlights the advantage of the catalyst—electrolyte engineering strategy for producing NH<sub>3</sub> at a high efficiency and rate.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 6","pages":"726 - 734"},"PeriodicalIF":4.5,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4221649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiannan Zhu, Vladimir Mahalec, Chen Fan, Minglei Yang, Feng Qian
{"title":"Multiple input self-organizing-map ResNet model for optimization of petroleum refinery conversion units","authors":"Jiannan Zhu, Vladimir Mahalec, Chen Fan, Minglei Yang, Feng Qian","doi":"10.1007/s11705-022-2269-5","DOIUrl":"10.1007/s11705-022-2269-5","url":null,"abstract":"<div><p>This work introduces a deep-learning network, i.e., multi-input self-organizing-map ResNet (MISR), for modeling refining units comprised of two reactors and a separation train. The model is comprised of self-organizing-map and the neural network parts. The self-organizing-map part maps the input data into multiple two-dimensional planes and sends them to the neural network part. In the neural network part, residual blocks enhance the convergence and accuracy, ensuring that the structure will not be overfitted easily. Development of the MISR model of hydrocracking unit also benefits from the utilization of prior knowledge of the importance of the input variables for predicting properties of the products. The results show that the proposed MISR structure predicts more accurately the product yields and properties than the previously introduced self-organizing-map convolutional neural network model, thus leading to more accurate optimization of the hydrocracker operation. Moreover, the MISR model has smoother error convergence than the previous model. Optimal operating conditions have been determined via multi-round-particle-swarm and differential evolution algorithms. Numerical experiments show that the MISR model is suitable for modeling nonlinear conversion units which are often encountered in refining and petrochemical plants.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 6","pages":"759 - 771"},"PeriodicalIF":4.5,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4218952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}