{"title":"TiO2@MCC改性PA6复合膜的制备及其水油分离性能","authors":"Pengcheng Hu, Aonan Lai, Shufeng Zhou","doi":"10.1007/s11705-025-2530-9","DOIUrl":null,"url":null,"abstract":"<div><p>Using the chemically stable and cost-effective nylon PA6 as a substrate with the help of the high hydrophilicity of microcrystalline cellulose (MCC) and TiO<sub>2</sub> nanoparticles to build micro-nanostructures on the surface of the nylon PA6, the superhydrophilic and underwater oleophobic composite membrane was fabricated to achieve the high efficiency of water-oil separation. TiO<sub>2</sub> nanoparticles wrapped in MCC were evenly dispersed on the composite membrane, and the pore size of the composite membrane decreased with increasing MCC mass fraction. MCC can be tightly bound to the surface of the PA6 membrane because of its excellent film-forming properties and ability to cross-link with PA6. The modification of TiO<sub>2</sub> and MCC led to a reduction in the surface adhesion of the composite membrane to oil droplets. The separation efficiency of the composite membrane for water-oil emulsions followed the order TiO<sub>2</sub>@2MCC-PA6 > TiO<sub>2</sub>@MCC-PA6 > TiO<sub>2</sub>-PA6 > PA6, and the change in filtration flux was exactly the opposite. TiO<sub>2</sub>@MCC-PA6 was the best composite membrane for three water-oil emulsions with sodium dodecyl sulfate (SDS), and its separation efficiency was over 96%. The water contact angle and underwater oil contact angle of TiO<sub>2</sub>@MCC-PA6 changed slightly after it was immersed in acidic and alkaline solutions for 36 h. The filtration flux and separation efficiency of TiO<sub>2</sub>@MCC-PA6 for <i>n</i>-hexane/SDS/water were still above 3100 L·m<sup>−2</sup>·h<sup>−1</sup>·bar<sup>−1</sup> and 93%, respectively, after 50 cycles.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of TiO2@MCC modified PA6 composite membranes and their water-oil separation performance\",\"authors\":\"Pengcheng Hu, Aonan Lai, Shufeng Zhou\",\"doi\":\"10.1007/s11705-025-2530-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using the chemically stable and cost-effective nylon PA6 as a substrate with the help of the high hydrophilicity of microcrystalline cellulose (MCC) and TiO<sub>2</sub> nanoparticles to build micro-nanostructures on the surface of the nylon PA6, the superhydrophilic and underwater oleophobic composite membrane was fabricated to achieve the high efficiency of water-oil separation. TiO<sub>2</sub> nanoparticles wrapped in MCC were evenly dispersed on the composite membrane, and the pore size of the composite membrane decreased with increasing MCC mass fraction. MCC can be tightly bound to the surface of the PA6 membrane because of its excellent film-forming properties and ability to cross-link with PA6. The modification of TiO<sub>2</sub> and MCC led to a reduction in the surface adhesion of the composite membrane to oil droplets. The separation efficiency of the composite membrane for water-oil emulsions followed the order TiO<sub>2</sub>@2MCC-PA6 > TiO<sub>2</sub>@MCC-PA6 > TiO<sub>2</sub>-PA6 > PA6, and the change in filtration flux was exactly the opposite. TiO<sub>2</sub>@MCC-PA6 was the best composite membrane for three water-oil emulsions with sodium dodecyl sulfate (SDS), and its separation efficiency was over 96%. The water contact angle and underwater oil contact angle of TiO<sub>2</sub>@MCC-PA6 changed slightly after it was immersed in acidic and alkaline solutions for 36 h. The filtration flux and separation efficiency of TiO<sub>2</sub>@MCC-PA6 for <i>n</i>-hexane/SDS/water were still above 3100 L·m<sup>−2</sup>·h<sup>−1</sup>·bar<sup>−1</sup> and 93%, respectively, after 50 cycles.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 4\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2530-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2530-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Preparation of TiO2@MCC modified PA6 composite membranes and their water-oil separation performance
Using the chemically stable and cost-effective nylon PA6 as a substrate with the help of the high hydrophilicity of microcrystalline cellulose (MCC) and TiO2 nanoparticles to build micro-nanostructures on the surface of the nylon PA6, the superhydrophilic and underwater oleophobic composite membrane was fabricated to achieve the high efficiency of water-oil separation. TiO2 nanoparticles wrapped in MCC were evenly dispersed on the composite membrane, and the pore size of the composite membrane decreased with increasing MCC mass fraction. MCC can be tightly bound to the surface of the PA6 membrane because of its excellent film-forming properties and ability to cross-link with PA6. The modification of TiO2 and MCC led to a reduction in the surface adhesion of the composite membrane to oil droplets. The separation efficiency of the composite membrane for water-oil emulsions followed the order TiO2@2MCC-PA6 > TiO2@MCC-PA6 > TiO2-PA6 > PA6, and the change in filtration flux was exactly the opposite. TiO2@MCC-PA6 was the best composite membrane for three water-oil emulsions with sodium dodecyl sulfate (SDS), and its separation efficiency was over 96%. The water contact angle and underwater oil contact angle of TiO2@MCC-PA6 changed slightly after it was immersed in acidic and alkaline solutions for 36 h. The filtration flux and separation efficiency of TiO2@MCC-PA6 for n-hexane/SDS/water were still above 3100 L·m−2·h−1·bar−1 and 93%, respectively, after 50 cycles.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.