{"title":"Enhanced C3H6/C3H8 separation performance in polysulfone membrane blended with rigid ZIF-8 crystals","authors":"Jiayu Luo, Luxi Lyu, Zongjie Yin, Yanying Wei","doi":"10.1007/s11705-024-2504-3","DOIUrl":"10.1007/s11705-024-2504-3","url":null,"abstract":"<div><p>Metal-organic frameworks have a wide range of applications in the field of membrane separation, but the inherent flexible structure and the difficulty for scale-up hinder their further applications. Herein, the relatively rigid zeolitic imidazolate framework-8 particles prepared under an electric field (E-ZIF-8) were used as the fillers in polysulfone (PSF) to form series of mixed matrix membranes. It was found that the introduction of E-ZIF-8 improves both the C<sub>3</sub>H<sub>6</sub> permeability and C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> selectivity of the membranes. Compared with the bare PSF membrane, the C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> selectivity of the 30 wt % E-ZIF-8@PSF membrane increased by ∼230%, while the C<sub>3</sub>H<sub>6</sub> permeability was enhanced by ∼830%. In addition, time and pressure dependence analysis demonstrated that such E-ZIF-8@PSF membranes also exhibited good long-term stability and pressure resistance, offering significant industrialization advantages.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Murugesan Panneerselvam, Marcelo Albuquerque, Iuri Soter Viana Segtovich, Frederico W. Tavares, Luciano T. Costa
{"title":"Investigating CO2 electro-reduction mechanisms: DFT insight into earth-abundant Mn diimine catalysts for CO2 conversions over hydrogen evolution reaction, feasibility, and selectivity considerations","authors":"Murugesan Panneerselvam, Marcelo Albuquerque, Iuri Soter Viana Segtovich, Frederico W. Tavares, Luciano T. Costa","doi":"10.1007/s11705-024-2502-5","DOIUrl":"10.1007/s11705-024-2502-5","url":null,"abstract":"<div><p>This study investigates the detailed mechanism of CO<sub>2</sub> conversion to CO using the manganese(I) diimine electrocatalyst [Mn(pyrox)(CO)<sub>3</sub>Br], synthesized by Christoph Steinlechner and coworkers. Employing density functional theory calculations, we thoroughly explore the electrocatalytic pathway of CO<sub>2</sub> reduction alongside the competing hydrogen evolution reaction. Our analysis reveals the significant role of diimine nitrogen coordination in enhancing the electron density of the Mn center, thereby favoring both CO<sub>2</sub> reduction and hydrogen evolution reaction thermodynamically. Furthermore, we observe that triethanolamine (TEOA) stabilizes transition states, aiding in CO<sub>2</sub> fixation and reduction. The critical steps influencing the reaction rate involve breaking the MnC(O)–OH bond during CO<sub>2</sub> reduction and cleaving the MnH–H–TEOA bond in the hydrogen evolution reaction. We explain the preference for CO<sub>2</sub> conversion to CO over H<sub>2</sub> evolution due to the higher energy barrier in forming the Mn-H<sub>2</sub> species during H<sub>2</sub> production. Our findings suggest the potential for tuning the electron density of the Mn center to enhance reactivity and selectivity in CO<sub>2</sub> reduction. Additionally, we analyze potential competing reactions, focusing on electrocatalytic processes for CO<sub>2</sub> reduction and evaluating “protonation-first” and “reduction-first” pathways through density functional theory calculations of redox potentials and Gibbs free energies. This analysis indicates the predominance of the “reduction-first” pathway in CO production, especially under high applied potential conditions. Moreover, our research highlights the selectivity of [Mn(pyrox)(CO)<sub>3</sub>Br] toward CO production over HCOO<sup>−</sup> and H<sub>2</sub> formation, proposing avenues for future research to expand upon these findings by using larger basis sets and exploring additional functionalized ligands.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical recycling of polyolefin waste: from the perspective of efficient pyrolysis reactors","authors":"Weiqiang Gao, Yinlong Chang, Qimin Zhou, Qingyue Wang, Khak Ho Lim, Deliang Wang, Jijiang Hu, Wen-Jun Wang, Bo-Geng Li, Pingwei Liu","doi":"10.1007/s11705-024-2498-x","DOIUrl":"10.1007/s11705-024-2498-x","url":null,"abstract":"<div><p>Polyolefins, widely used for packaging, construction, and electronics, facilitate daily life but cause severe environmental pollution when discarded after usage. Chemical recycling of polyolefins has received widespread attention for eliminating polyolefin pollution, as it is promising to convert polyolefin wastes to high-value chemicals (e.g., fuels, light olefins, aromatic hydrocarbons). However, the chemical recycling of polyolefins typically involves high-viscosity, high-temperature and high-pressure, and its efficiency depends on the catalytic materials, reaction conditions, and more essentially, on the reactors which are overlooked in previous studies. Herein, this review first introduces the mechanisms and influencing factors of polyolefin waste upcycling, followed by a brief overview of <i>in situ</i> and <i>ex situ</i> processes. Emphatically, the review focuses on the various reactors used in polyolefin recycling (i.e., batch/semi-batch reactor, fixed bed reactor, fluidized bed reactor, conical spouted bed reactor, screw reactor, molten metal bed reactor, vertical falling film reactor, rotary kiln reactor and microwave-assisted reactor) and their respective merits and demerits. Nevertheless, challenges remain in developing highly efficient reacting techniques to realize the practical application. In light of this, the review is concluded with recommendations and prospects to enlighten the future of polyolefin upcycling.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DFT insights into oxygen vacancy formation and chemical looping dry reforming of methane on metal-substituted CeO2 (111) surface","authors":"Mingyi Chen, Zeshan Wang, Yuelun Li, Yuxin Wang, Lei Jiang, Huicong Zuo, Linan Huang, Yuhao Wang, Dong Tian, Hua Wang, Kongzhai Li","doi":"10.1007/s11705-024-2513-2","DOIUrl":"10.1007/s11705-024-2513-2","url":null,"abstract":"<div><p>The oxygen vacancy formation energy and chemical looping dry reforming of methane over metal-substituted CeO<sub>2</sub> (111) are investigated based on density functional theory calculations. The calculated results indicate that among the various metals that can substitute for the Ce atom in the CeO<sub>2</sub>(111) surface, Zn substitution results in the lowest oxygen vacancy formation energy. For the activation of CH<sub>4</sub> on CeO<sub>2</sub> (111) and Zn-substituted CeO<sub>2</sub> (111) surfaces, the calculated results illustrate that the dissociation process of CH<sub>3(ads)</sub> is very difficult on pristine surfaces and unfavorable for CHO<sub>(ads)</sub> on substituted surfaces. Furthermore, the dissociative adsorption of CO and H<sub>2</sub> on the Zn-substituted CeO<sub>2</sub> (111) surface requires high energy, which is unfavorable for syngas production. This work demonstrates that excessive formation of oxygen vacancy can lead to excessively high adsorption energies, thus limiting the conversion efficiency of the reaction intermediates. This finding provides important guidance and application prospects for the design and optimization of oxygen carrier materials, especially in the field of chemical looping dry methane reforming to syngas.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning meets enzyme engineering: examples in the design of polyethylene terephthalate hydrolases","authors":"Rohan Ali, Yifei Zhang","doi":"10.1007/s11705-024-2500-7","DOIUrl":"10.1007/s11705-024-2500-7","url":null,"abstract":"<div><p>The trend of employing machine learning methods has been increasing to develop promising biocatalysts. Leveraging the experimental findings and simulation data, these methods facilitate enzyme engineering and even the design of new-to-nature enzymes. This review focuses on the application of machine learning methods in the engineering of polyethylene terephthalate (PET) hydrolases, enzymes that have the potential to help address plastic pollution. We introduce an overview of machine learning workflows, useful methods and tools for protein design and engineering, and discuss the recent progress of machine learning-aided PET hydrolase engineering and <i>de novo</i> design of PET hydrolases. Finally, as machine learning in enzyme engineering is still evolving, we foresee that advancements in computational power and quality data resources will considerably increase the use of data-driven approaches in enzyme engineering in the coming decades.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative analysis of aromatic compounds steam reforming over Rh supported on γ-Al2O3","authors":"Marinela D. Zhurka, Panagiotis N. Kechagiopoulos","doi":"10.1007/s11705-024-2514-1","DOIUrl":"10.1007/s11705-024-2514-1","url":null,"abstract":"<div><p>The steam reforming of bio-oil can provide a sustainable means to produce hydrogen, while tar steam reforming can significantly enhance the efficiency of the biomass gasification process. Bio-oils and tars are highly complex mixtures, and while there has been extensive research on the reforming of small oxygenates and aliphatic hydrocarbons, there have been comparatively much less studies on aromatics reforming. In the current work, we present a comparative study of the steam reforming of hydroquinone, benzyl alcohol and toluene, selected as model compounds of the aromatic fraction of bio-oils and tars with different functional groups. The effect of temperature, partial pressure of reactants, and contact time is studied over a Rh catalyst supported on <i>γ</i>-Al<sub>2</sub>O<sub>3</sub>. Across the range of conditions studied, hydroquinone is found to be more reactive, followed by benzyl alcohol, and, lastly, toluene. The differences are attributed to the presence of hydroxyl groups in the case of the former two compounds, versus a methyl group in the case of toluene, effectively correlating activity with the O/C ratio in the compounds’ molecule. Nonetheless, similar pathways are observed, with methane, benzene, naphthalene and toluene (during hydroquinone and benzyl alcohol reforming) detected as products in addition to carbon oxides and hydrogen.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 3","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11705-024-2514-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Larissa Pinheiro de Souza, Flávio Olimpio Sanches-Neto, Júlio César de Oliveira Ribeiro, Bruno Ramos, Valter H. Carvalho-Silva, Antonio Carlos Silva Costa Teixeira
{"title":"Screening techniques as a preliminary diagnostic tool for advanced oxidative processes on a laboratory scale","authors":"Larissa Pinheiro de Souza, Flávio Olimpio Sanches-Neto, Júlio César de Oliveira Ribeiro, Bruno Ramos, Valter H. Carvalho-Silva, Antonio Carlos Silva Costa Teixeira","doi":"10.1007/s11705-024-2517-y","DOIUrl":"10.1007/s11705-024-2517-y","url":null,"abstract":"<div><p>This study introduces an innovative screening approach to evaluate advanced oxidation processes (AOPs) as a preliminary diagnostic tool for degrading emerging contaminants (EC). It includes the design, prototyping, and cost-benefit analysis of circular photochemical reactors with flat and spiral internal geometries. Three-dimensional (3D) printing was used for reactor prototyping, providing flexibility and economy, and this stage was assisted by the hydrodynamic analysis of the prototypes based on residence time distribution (RTD) and macromixing models. The research evaluates the degradation of a model contaminant of emerging concern, fluoxetine (FLX) hydrochloride, using the solar/persulfate (PS) process in two water matrices (i.e., ultrapure water and sewage treatment plant effluent) to optimize reactor performance. The study also proposes primary theoretical pathways for fluoxetine degradation involving hydroxyl and sulfate radicals, as well as predicting the toxicity of the parent compound and its primary metabolites using quantitative structure-activity relationship (QSAR) models. The spiral reactor exhibits improved hydrodynamic behavior, closely resembling continuous stirred and plug flow reactors in series. Despite a slightly lower specific degradation rate in real wastewater, the solar/PS process remains effective for both matrices. By-products generated via the sulfate radical pathway are expected to be less toxic than those formed by hydroxyl radicals (HO·) attack.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinetic study of the effect of thermal hysteresis on pyrolysis of vacuum residue","authors":"Chao Wang, Xiaogang Shi, Aijun Duan, Xingying Lan, Jinsen Gao, Qingang Xiong","doi":"10.1007/s11705-024-2496-z","DOIUrl":"10.1007/s11705-024-2496-z","url":null,"abstract":"<div><p>Investigating the thermal hysteresis and its effect on the kinetic behaviors and reaction model of vacuum residue pyrolysis is of significant importance in industry and scientific research. Effects of heating rate and heating transfer resistance on the pyrolysis process were examined with the thermogravimetric analysis. The kinetic characteristics of the vacuum residue pyrolysis were estimated using the iso-conversional method and integral master-plots method based on a three-stage reaction model through the deconvolution of Fraser-Suzuki function. Results showed that the reaction order models for the first and second stages were associated with the evaporation of vapor, while the nucleation and growth models for the third stage were linked to char formation. During the pyrolysis, the thermal hysteresis led to an increase in the reaction order in the first stage, which resulted in a delayed release of generated hydrocarbons due to high heating rate and enhanced heat transfer resistance. The reaction in the last stage primarily involved coking, where the presence of an inert solid acted as a nucleating agent, facilitating char formation and reducing the activation energy. The optimization results suggest that the obtained three-stage reaction model and kinetic triplets have the potential to effectively describe the active pyrolysis behavior of vacuum residue under high thermal hysteresis.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong-Shan Xiao, Min-Li Zhu, Han-Qing Ge, Zhong-Wen Liu
{"title":"Breaking the Ni loading-reducibility-dispersion dependence achieved by solid-state co-grinding","authors":"Yong-Shan Xiao, Min-Li Zhu, Han-Qing Ge, Zhong-Wen Liu","doi":"10.1007/s11705-024-2499-9","DOIUrl":"10.1007/s11705-024-2499-9","url":null,"abstract":"<div><p>The loading-dispersion-reducibility dependence has always been one of the most critical issues in the development of high-performance supported metal catalysts. Herein, up to 40 wt % NiO over ordered mesoporous alumina (OMA) was prepared by co-grinding the hybrid of template-containing OMA and Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O. Characterization results confirmed that the OMA mesostructure was still preserved even after loading NiO at a content as high as 40 wt %. More importantly, the reduction extent, dispersion, and average particle size of the Ni/OMA catalysts were maintained at ⩾ 91.0%, ∼13.5%, and ∼4.0–5.0 nm, respectively, when the NiO loading was increased from 20 to 40 wt %. The catalysts were evaluated for the CO methanation as a model reaction, and the similarly high turnover frequency of 24.0 h<sup>−1</sup> was achieved at 300 °C for all of the Ni/OMA catalysts. For the catalyst with the highest NiO loading of 40 wt % (40Ni/OMA), the low-temperature activity at 300 °C indexed by the space-time yield of methane (over <span>(325.8 text{mol}_{text{CH}_{4}}cdot {text{kg}_{text{cat}}}^{-1}cdot mathrm{h}^{-1})</span>) was achieved, while the catalyst was operated without an observable deactivation for a time on stream of 120 h under severe reaction conditions of 600 °C and a very high gas hourly space velocity of 240000 mL·g<sup>−1</sup>·h<sup>−1</sup>. With these significant results, this work paves the way for a rational and controllable design of supported Ni catalysts by breaking the loading-dispersion-reducibility dependence and stabilizing Ni nanoparticles under harsh reaction conditions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue-Rong Zhang, Zhen Qin, Song Gu, Jia-Xin Zhao, Xian-Yue Xiang, Chuan Liu, Yu-Zhong Wang, Li Chen
{"title":"Flame-retardant, recyclable, and hydrothermally degradable epoxy resins and their degradation products for high-strength adhesives","authors":"Yue-Rong Zhang, Zhen Qin, Song Gu, Jia-Xin Zhao, Xian-Yue Xiang, Chuan Liu, Yu-Zhong Wang, Li Chen","doi":"10.1007/s11705-024-2497-y","DOIUrl":"10.1007/s11705-024-2497-y","url":null,"abstract":"<div><p>To date, sustainable thermosetting polymers and their composites have emerged to address recyclability issues. However, achieving mild degradation of these polymers compromises their comprehensive properties such as flame retardancy and glass transition temperature (<i>T</i><sub>g</sub>). Moreover, the reuse of degradation products after recycling for upcycling remains a significant challenge. This study introduces phosphorus-containing anhydride into tetraglycidyl methylene diphenylamine via a facile anhydride-epoxy curing equilibrium with triethanolamine as a transesterification modifier to successfully prepare flame-retardant, malleable, reprocessable, and easily hydrothermally degradable epoxy vitrimers and recyclable carbon fiber-reinforced epoxy composites (CFRECs). The composite exhibited excellent flame retardancy and a high <i>T</i><sub>g</sub> of 192 °C, while the presence of stoichiometric primary hydroxyl groups along the ester-bonding crosslinks enabled environmentally friendly degradation (in H<sub>2</sub>O) at 200 °C without any external catalyst. Under mild degradation conditions, the fibers of the composite material were successfully recycled without being damaged, and the degradation products were reused to create a recyclable adhesive with a peel strength of 3.5 MPa. This work presents a method to produce flame retardants and sustainable CFRECs for maximizing the value of degradation products, offering a new upcycling method for high-end applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}