{"title":"增强聚砜膜与硬质 ZIF-8 结晶体的 C3H6/C3H8 分离性能","authors":"Jiayu Luo, Luxi Lyu, Zongjie Yin, Yanying Wei","doi":"10.1007/s11705-024-2504-3","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-organic frameworks have a wide range of applications in the field of membrane separation, but the inherent flexible structure and the difficulty for scale-up hinder their further applications. Herein, the relatively rigid zeolitic imidazolate framework-8 particles prepared under an electric field (E-ZIF-8) were used as the fillers in polysulfone (PSF) to form series of mixed matrix membranes. It was found that the introduction of E-ZIF-8 improves both the C<sub>3</sub>H<sub>6</sub> permeability and C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> selectivity of the membranes. Compared with the bare PSF membrane, the C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> selectivity of the 30 wt % E-ZIF-8@PSF membrane increased by ∼230%, while the C<sub>3</sub>H<sub>6</sub> permeability was enhanced by ∼830%. In addition, time and pressure dependence analysis demonstrated that such E-ZIF-8@PSF membranes also exhibited good long-term stability and pressure resistance, offering significant industrialization advantages.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced C3H6/C3H8 separation performance in polysulfone membrane blended with rigid ZIF-8 crystals\",\"authors\":\"Jiayu Luo, Luxi Lyu, Zongjie Yin, Yanying Wei\",\"doi\":\"10.1007/s11705-024-2504-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal-organic frameworks have a wide range of applications in the field of membrane separation, but the inherent flexible structure and the difficulty for scale-up hinder their further applications. Herein, the relatively rigid zeolitic imidazolate framework-8 particles prepared under an electric field (E-ZIF-8) were used as the fillers in polysulfone (PSF) to form series of mixed matrix membranes. It was found that the introduction of E-ZIF-8 improves both the C<sub>3</sub>H<sub>6</sub> permeability and C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> selectivity of the membranes. Compared with the bare PSF membrane, the C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> selectivity of the 30 wt % E-ZIF-8@PSF membrane increased by ∼230%, while the C<sub>3</sub>H<sub>6</sub> permeability was enhanced by ∼830%. In addition, time and pressure dependence analysis demonstrated that such E-ZIF-8@PSF membranes also exhibited good long-term stability and pressure resistance, offering significant industrialization advantages.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2504-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2504-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Enhanced C3H6/C3H8 separation performance in polysulfone membrane blended with rigid ZIF-8 crystals
Metal-organic frameworks have a wide range of applications in the field of membrane separation, but the inherent flexible structure and the difficulty for scale-up hinder their further applications. Herein, the relatively rigid zeolitic imidazolate framework-8 particles prepared under an electric field (E-ZIF-8) were used as the fillers in polysulfone (PSF) to form series of mixed matrix membranes. It was found that the introduction of E-ZIF-8 improves both the C3H6 permeability and C3H6/C3H8 selectivity of the membranes. Compared with the bare PSF membrane, the C3H6/C3H8 selectivity of the 30 wt % E-ZIF-8@PSF membrane increased by ∼230%, while the C3H6 permeability was enhanced by ∼830%. In addition, time and pressure dependence analysis demonstrated that such E-ZIF-8@PSF membranes also exhibited good long-term stability and pressure resistance, offering significant industrialization advantages.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.