{"title":"Phenomenology, Perspectivalism and (Quantum) Physics","authors":"Steven French","doi":"10.1007/s10701-024-00769-3","DOIUrl":"10.1007/s10701-024-00769-3","url":null,"abstract":"<div><p>It has been claimed that Massimi’s recent perspectival approach to science sits in tension with a realist stance. I shall argue that this tension can be defused in the quantum context by recasting Massimi’s perspectivalism within a phenomenological framework. I shall begin by indicating how the different but complementary forms of the former are manifested in the distinction between certain so-called ‘-epistemic’ and ‘-ontic’ understandings of quantum mechanics, namely QBism and Relational Quantum Mechanics, respectively. A brief consideration of Dieks’ perspectivism will then lead to a consideration of the much-maligned and typically dismissed role of the observer in the measurement process. This opens the door to London and Bauer’s presentation of a form of ‘phenomenological quantum perspectivalism’ that brings together Massimi’s two forms and explicitly eschews the ‘naïve’ realism that creates the above tension. I shall conclude with some reflections on how intersubjectivity can still be established within this framework, focusing in particular on how Massimi’s idea of ‘interlacing’ scientific perspectives can be accommodated, using the example of a ‘new cosmopolitanism’ that gave rise to Bose-Einstein statistics.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-024-00769-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PBR, Nonreality and Entangled Measurement","authors":"Gábor Hofer-Szabó","doi":"10.1007/s10701-024-00772-8","DOIUrl":"10.1007/s10701-024-00772-8","url":null,"abstract":"<div><p>In a recent paper, Cabbolet argues that the PBR theorem is nonreal since in the ensemble interpretation of quantum mechanics the entangled measurement used in the derivation of the PBR theorem is nonexisting. However, Cabbolet (1) does not provide any argument for the nonexistence of entangled measurements beyond the incompatibility of the existence of entangled measurements and the existence of <span>(psi)</span>-epistemic models which we already know from the PBR theorem; and (2) he does not show why it is more reasonable to abandon entangled measurements instead of <span>(psi)</span>-epistemic models. Hence, the PBR theorem remains intact.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Foundational Issues in Group Field Theory","authors":"Álvaro Mozota Frauca","doi":"10.1007/s10701-024-00763-9","DOIUrl":"10.1007/s10701-024-00763-9","url":null,"abstract":"<div><p>In this paper I offer an introduction to group field theory (GFT) and to some of the issues affecting the foundations of this approach to quantum gravity. I first introduce covariant GFT as the theory that one obtains by interpreting the amplitudes of certain spin foam models as Feynman amplitudes in a perturbative expansion. However, I argue that it is unclear that this definition of GFTs amounts to something beyond a computational rule for finding these transition amplitudes and that GFT doesn’t seem able to offer any new insight into the foundations of quantum gravity. Then, I move to another formulation of GFT which I call canonical GFT and which uses the standard structures of quantum mechanics. This formulation is of extended use in cosmological applications of GFT, but I argue that it is only heuristically connected with the covariant version and spin foam models. Moreover, I argue that this approach is affected by a version of the problem of time which raises worries about its viability. Therefore, I conclude that there are serious concerns about the justification and interpretation of GFT in either version of it.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-024-00763-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141123026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum Mechanics Based on an Extended Least Action Principle and Information Metrics of Vacuum Fluctuations","authors":"Jianhao M. Yang","doi":"10.1007/s10701-024-00757-7","DOIUrl":"10.1007/s10701-024-00757-7","url":null,"abstract":"<div><p>We show that the formulations of non-relativistic quantum mechanics can be derived from an extended least action principle. The principle can be considered as an extension of the least action principle from classical mechanics by factoring in two assumptions. First, the Planck constant defines the minimal amount of action a physical system needs to exhibit during its dynamics in order to be observable. Second, there is constant vacuum fluctuation along a classical trajectory. A novel method is introduced to define the information metrics to measure additional observability due to vacuum fluctuations, which is then converted to an additional action through the first assumption. Applying the variational principle to minimize the total actions allows us to recover the basic quantum formulations including the uncertainty relation and the Schrödinger equation in the position representation. In the momentum representation, the same method can be applied to obtain the Schrödinger equation for a free particle while further investigation is still needed for a particle with an external potential. Furthermore, the principle brings in new results on two fronts. At the conceptual level, we find that the information metrics for vacuum fluctuations are responsible for the origin of the Bohm quantum potential. Even though the Bohm potential for a bipartite system is inseparable, the underlying vacuum fluctuations are local. Thus, inseparability of the Bohm potential does not justify a non-local causal relation between the two subsystems. At the mathematical level, quantifying the information metrics for vacuum fluctuations using more general definitions of relative entropy results in a generalized Schrödinger equation that depends on the order of relative entropy. The extended least action principle is a new mathematical tool. It can be applied to derive other quantum formalisms such as quantum scalar field theory.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-024-00757-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bohr on EPR, the Quantum Postulate, Determinism, and Contextuality","authors":"Zachary Hall","doi":"10.1007/s10701-024-00764-8","DOIUrl":"10.1007/s10701-024-00764-8","url":null,"abstract":"<div><p>The famous EPR article of 1935 challenged the completeness of quantum mechanics and spurred decades of theoretical and experimental research into the foundations of quantum theory. A crowning achievement of this research is the demonstration that nature cannot in general consist in noncontextual pre-measurement properties that uniquely determine possible measurement outcomes, through experimental violations of Bell inequalities and Kochen-Specker theorems. In this article, I reconstruct an argument from Niels Bohr’s writings that the reality of the Einstein-Planck-de Broglie relations alone implies that no such properties can exist for momentum and position measurements, show how this argument responds to the challenge of EPR on general physical grounds, and advance that this reconstruction shows that and how Bohr’s “complementarity” is a view of the objective content and logic of quantum theory.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulating Nelsonian Quantum Field Theory","authors":"Andrea Carosso","doi":"10.1007/s10701-024-00766-6","DOIUrl":"10.1007/s10701-024-00766-6","url":null,"abstract":"<div><p>We describe the picture of physical processes suggested by Edward Nelson’s stochastic mechanics when generalized to quantum field theory regularized on a lattice, after an introductory review of his theory applied to the hydrogen atom. By performing numerical simulations of the relevant stochastic processes, we observe that Nelson’s theory provides a means of generating typical field configurations for any given quantum state. In particular, an intuitive picture is given of the field “beable”—to use a phrase of John Stewart Bell—corresponding to the Fock vacuum, and an explanation is suggested for how particle-like features can be exhibited by excited states. We then argue that the picture looks qualitatively similar when generalized to interacting scalar field theory. Lastly, we compare the Nelsonian framework to various other proposed ontologies for QFT, and remark upon their relative merits in light of the effective field theory paradigm. Links to animations of the corresponding beables are provided throughout.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Thermodynamic Cost of Choosing","authors":"Carlo Rovelli","doi":"10.1007/s10701-024-00765-7","DOIUrl":"10.1007/s10701-024-00765-7","url":null,"abstract":"<div><p>Choice can be defined in thermodynamical terms, and shown to have a thermodynamic cost: choosing between a binary alternative at temperature <i>T</i> dissipates an energy <span>(Ege kTln 2)</span>.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relational Quantum Mechanics: Ozawa’s Intersubjectivity Theorem as Justification of the Postulate on Internally Consistent Descriptions","authors":"Andrei Khrennikov","doi":"10.1007/s10701-024-00762-w","DOIUrl":"10.1007/s10701-024-00762-w","url":null,"abstract":"<div><p>The Ozawa’s intersubjectivity theorem (OIT) proved within quantum measurement theory supports the new postulate of relational quantum mechanics (RQM), the postulate on internally consistent descriptions. But from OIT viewpoint postulate’s formulation should be completed by the assumption of probability reproducibility. We remark that this postulate was proposed only recently to resolve the problem of intersubjectivity of information in RQM. In contrast to RQM for which OIT is a supporting theoretical statement, QBism is challenged by OIT.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-024-00762-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beyond the Quantum Membrane Paradigm: A Philosophical Analysis of the Structure of Black Holes in Full QG","authors":"Enrico Cinti, Marco Sanchioni","doi":"10.1007/s10701-024-00758-6","DOIUrl":"10.1007/s10701-024-00758-6","url":null,"abstract":"<div><p>This paper presents a philosophical analysis of the structure of black holes, focusing on the event horizon and its fundamental status. While black holes have been at the centre of countless paradoxes arising from the attempt to merge quantum mechanics and general relativity, recent experimental discoveries have emphasised their importance as objects for the development of Quantum Gravity. In particular, the statistical mechanical underpinning of black hole thermodynamics has been a central research topic. The Quantum Membrane Paradigm, proposed by Wallace (Stud Hist Philos Sci Part B 66:103-117, 2019), posits a real membrane made of black hole microstates at the black hole horizon to provide a statistical mechanical understanding of black hole thermodynamics from an exterior observer’s point of view. However, we argue that the Quantum Membrane Paradigm is limited to low-energy Quantum Gravity and needs to be modified to avoid reference to geometric notions, such as the event horizon, which presumably do not make sense in the non-spatiotemporal context of full Quantum Gravity. Our proposal relies on the central dogma of black hole physics. It considers recent developments, such as replica wormholes and entanglement wedge reconstruction, to provide a new framework for understanding the nature of black hole horizons in full Quantum Gravity.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-024-00758-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Eliminating the ‘Impossible’: Recent Progress on Local Measurement Theory for Quantum Field Theory","authors":"Maria Papageorgiou, Doreen Fraser","doi":"10.1007/s10701-024-00756-8","DOIUrl":"10.1007/s10701-024-00756-8","url":null,"abstract":"<div><p>Arguments by Sorkin (Impossible measurements on quantum fields. In: Directions in general relativity: proceedings of the 1993 International Symposium, Maryland, vol 2, pp 293–305, 1993) and Borsten et al. (Phys Rev D 104(2), 2021. https://doi.org/10.1103/PhysRevD.104.025012) establish that a natural extension of quantum measurement theory from non-relativistic quantum mechanics to relativistic quantum theory leads to the unacceptable consequence that expectation values in one region depend on which unitary operation is performed in a spacelike separated region. Sorkin [1] labels such scenarios ‘impossible measurements’. We explicitly present these arguments as a no-go result with the logical form of a reductio argument and investigate the consequences for measurement in quantum field theory (QFT). Sorkin-type impossible measurement scenarios clearly illustrate the moral that Microcausality is not by itself sufficient to rule out superluminal signalling in relativistic quantum theories that use Lüders’ rule. We review three different approaches to formulating an account of measurement for QFT and analyze their responses to the ‘impossible measurements’ problem. Two of the approaches are: a measurement theory based on detector models proposed in Polo-Gómez et al. (Phys Rev D, 2022. https://doi.org/10.1103/physrevd.105.065003) and a measurement framework for algebraic QFT proposed in Fewster and Verch (Commun Math Phys 378(2):851–889, 2020). Of particular interest for foundations of QFT is that they share common features that may hold general morals about how to represent measurement in QFT. These morals are about the role that dynamics plays in eliminating ‘impossible measurements’, the abandonment of the operational interpretation of local algebras <span>({mathcal {A}}(O))</span> as representing possible operations carried out in region <i>O</i>, and the interpretation of state update rules. Finally, we examine the form that the ‘impossible measurements’ problem takes in histories-based approaches and we discuss the remaining challenges.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-024-00756-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}