JMIR Medical Informatics最新文献

筛选
英文 中文
Clinical Decision Support to Increase Emergency Department Naloxone Coprescribing: Implementation Report. 临床决策支持增加急诊科纳洛酮处方:实施报告。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-11-06 DOI: 10.2196/58276
Stuart W Sommers, Heather J Tolle, Katy E Trinkley, Christine G Johnston, Caitlin L Dietsche, Stephanie V Eldred, Abraham T Wick, Jason A Hoppe
{"title":"Clinical Decision Support to Increase Emergency Department Naloxone Coprescribing: Implementation Report.","authors":"Stuart W Sommers, Heather J Tolle, Katy E Trinkley, Christine G Johnston, Caitlin L Dietsche, Stephanie V Eldred, Abraham T Wick, Jason A Hoppe","doi":"10.2196/58276","DOIUrl":"10.2196/58276","url":null,"abstract":"<p><strong>Background: </strong>Coprescribing naloxone with opioid analgesics is a Centers for Disease Control and Prevention (CDC) best practice to mitigate the risk of fatal opioid overdose, yet coprescription by emergency medicine clinicians is rare, occurring less than 5% of the time it is indicated. Clinical decision support (CDS) has been associated with increased naloxone prescribing; however, key CDS design characteristics and pragmatic outcome measures necessary to understand replicability and effectiveness have not been reported.</p><p><strong>Objective: </strong>This study aimed to rigorously evaluate and quantify the impact of CDS designed to improve emergency department (ED) naloxone coprescribing. We hypothesized CDS would increase naloxone coprescribing and the number of naloxone prescriptions filled by patients discharged from EDs in a large health care system.</p><p><strong>Methods: </strong>Following user-centered design principles, we designed and implemented a fully automated, interruptive, electronic health record-based CDS to nudge clinicians to coprescribe naloxone with high-risk opioid prescriptions. \"High-risk\" opioid prescriptions were defined as any opioid analgesic prescription ≥90 total morphine milligram equivalents per day or for patients with a prior diagnosis of opioid use disorder or opioid overdose. The Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework was used to evaluate pragmatic CDS outcomes of reach, effectiveness, adoption, implementation, and maintenance. Effectiveness was the primary outcome of interest and was assessed by (1) constructing a Bayesian structural time-series model of the number of ED visits with naloxone coprescriptions before and after CDS implementation and (2) calculating the percentage of naloxone prescriptions associated with CDS that were filled at an outpatient pharmacy. Mann-Kendall tests were used to evaluate longitudinal trends in CDS adoption. All outcomes were analyzed in R (version 4.2.2; R Core Team).</p><p><strong>Unlabelled: </strong>Between November 2019 and July 2023, there were 1,994,994 ED visits. CDS reached clinicians in 0.83% (16,566/1,994,994) of all visits and 15.99% (16,566/103,606) of ED visits where an opioid was prescribed at discharge. Clinicians adopted CDS, coprescribing naloxone in 34.36% (6613/19,246) of alerts. CDS was effective, increasing naloxone coprescribing from baseline by 18.1 (95% CI 17.9-18.3) coprescriptions per week or 2,327% (95% CI 3390-3490). Patients filled 43.80% (1989/4541) of naloxone coprescriptions. The CDS was implemented simultaneously at every ED and no adaptations were made to CDS postimplementation. CDS was maintained beyond the study period and maintained its effect, with adoption increasing over time (τ=0.454; P<.001).</p><p><strong>Conclusions: </strong>Our findings advance the evidence that electronic health record-based CDS increases the number of naloxone coprescriptions and improves the dis","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e58276"},"PeriodicalIF":3.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic Health Record Data Quality and Performance Assessments: Scoping Review. 电子健康记录数据质量和性能评估:范围审查。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-11-06 DOI: 10.2196/58130
Yordan P Penev, Timothy R Buchanan, Matthew M Ruppert, Michelle Liu, Ramin Shekouhi, Ziyuan Guan, Jeremy Balch, Tezcan Ozrazgat-Baslanti, Benjamin Shickel, Tyler J Loftus, Azra Bihorac
{"title":"Electronic Health Record Data Quality and Performance Assessments: Scoping Review.","authors":"Yordan P Penev, Timothy R Buchanan, Matthew M Ruppert, Michelle Liu, Ramin Shekouhi, Ziyuan Guan, Jeremy Balch, Tezcan Ozrazgat-Baslanti, Benjamin Shickel, Tyler J Loftus, Azra Bihorac","doi":"10.2196/58130","DOIUrl":"10.2196/58130","url":null,"abstract":"<p><strong>Background: </strong>Electronic health records (EHRs) have an enormous potential to advance medical research and practice through easily accessible and interpretable EHR-derived databases. Attainability of this potential is limited by issues with data quality (DQ) and performance assessment.</p><p><strong>Objective: </strong>This review aims to streamline the current best practices on EHR DQ and performance assessments as a replicable standard for researchers in the field.</p><p><strong>Methods: </strong>PubMed was systematically searched for original research articles assessing EHR DQ and performance from inception until May 7, 2023.</p><p><strong>Results: </strong>Our search yielded 26 original research articles. Most articles had 1 or more significant limitations, including incomplete or inconsistent reporting (n=6, 30%), poor replicability (n=5, 25%), and limited generalizability of results (n=5, 25%). Completeness (n=21, 81%), conformance (n=18, 69%), and plausibility (n=16, 62%) were the most cited indicators of DQ, while correctness or accuracy (n=14, 54%) was most cited for data performance, with context-specific supplementation by recency (n=7, 27%), fairness (n=6, 23%), stability (n=4, 15%), and shareability (n=2, 8%) assessments. Artificial intelligence-based techniques, including natural language data extraction, data imputation, and fairness algorithms, were demonstrated to play a rising role in improving both dataset quality and performance.</p><p><strong>Conclusions: </strong>This review highlights the need for incentivizing DQ and performance assessments and their standardization. The results suggest the usefulness of artificial intelligence-based techniques for enhancing DQ and performance to unlock the full potential of EHRs to improve medical research and practice.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e58130"},"PeriodicalIF":3.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Artificial Intelligence and Data Science for Integration of Social Determinants of Health in Emergency Medicine: Scoping Review. 利用人工智能和数据科学将健康的社会决定因素纳入急诊医学:范围审查。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-10-30 DOI: 10.2196/57124
Ethan E Abbott, Donald Apakama, Lynne D Richardson, Lili Chan, Girish N Nadkarni
{"title":"Leveraging Artificial Intelligence and Data Science for Integration of Social Determinants of Health in Emergency Medicine: Scoping Review.","authors":"Ethan E Abbott, Donald Apakama, Lynne D Richardson, Lili Chan, Girish N Nadkarni","doi":"10.2196/57124","DOIUrl":"10.2196/57124","url":null,"abstract":"<p><strong>Background: </strong>Social determinants of health (SDOH) are critical drivers of health disparities and patient outcomes. However, accessing and collecting patient-level SDOH data can be operationally challenging in the emergency department (ED) clinical setting, requiring innovative approaches.</p><p><strong>Objective: </strong>This scoping review examines the potential of AI and data science for modeling, extraction, and incorporation of SDOH data specifically within EDs, further identifying areas for advancement and investigation.</p><p><strong>Methods: </strong>We conducted a standardized search for studies published between 2015 and 2022, across Medline (Ovid), Embase (Ovid), CINAHL, Web of Science, and ERIC databases. We focused on identifying studies using AI or data science related to SDOH within emergency care contexts or conditions. Two specialized reviewers in emergency medicine (EM) and clinical informatics independently assessed each article, resolving discrepancies through iterative reviews and discussion. We then extracted data covering study details, methodologies, patient demographics, care settings, and principal outcomes.</p><p><strong>Results: </strong>Of the 1047 studies screened, 26 met the inclusion criteria. Notably, 9 out of 26 (35%) studies were solely concentrated on ED patients. Conditions studied spanned broad EM complaints and included sepsis, acute myocardial infarction, and asthma. The majority of studies (n=16) explored multiple SDOH domains, with homelessness/housing insecurity and neighborhood/built environment predominating. Machine learning (ML) techniques were used in 23 of 26 studies, with natural language processing (NLP) being the most commonly used approach (n=11). Rule-based NLP (n=5), deep learning (n=2), and pattern matching (n=4) were the most commonly used NLP techniques. NLP models in the reviewed studies displayed significant predictive performance with outcomes, with F1-scores ranging between 0.40 and 0.75 and specificities nearing 95.9%.</p><p><strong>Conclusions: </strong>Although in its infancy, the convergence of AI and data science techniques, especially ML and NLP, with SDOH in EM offers transformative possibilities for better usage and integration of social data into clinical care and research. With a significant focus on the ED and notable NLP model performance, there is an imperative to standardize SDOH data collection, refine algorithms for diverse patient groups, and champion interdisciplinary synergies. These efforts aim to harness SDOH data optimally, enhancing patient care and mitigating health disparities. Our research underscores the vital need for continued investigation in this domain.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e57124"},"PeriodicalIF":3.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifaceted Natural Language Processing Task-Based Evaluation of Bidirectional Encoder Representations From Transformers Models for Bilingual (Korean and English) Clinical Notes: Algorithm Development and Validation. 基于多方面自然语言处理任务的双向编码器表征评估--来自双语(韩语和英语)临床笔记的变换器模型:算法开发与验证。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-10-30 DOI: 10.2196/52897
Kyungmo Kim, Seongkeun Park, Jeongwon Min, Sumin Park, Ju Yeon Kim, Jinsu Eun, Kyuha Jung, Yoobin Elyson Park, Esther Kim, Eun Young Lee, Joonhwan Lee, Jinwook Choi
{"title":"Multifaceted Natural Language Processing Task-Based Evaluation of Bidirectional Encoder Representations From Transformers Models for Bilingual (Korean and English) Clinical Notes: Algorithm Development and Validation.","authors":"Kyungmo Kim, Seongkeun Park, Jeongwon Min, Sumin Park, Ju Yeon Kim, Jinsu Eun, Kyuha Jung, Yoobin Elyson Park, Esther Kim, Eun Young Lee, Joonhwan Lee, Jinwook Choi","doi":"10.2196/52897","DOIUrl":"10.2196/52897","url":null,"abstract":"<p><strong>Background: </strong>The bidirectional encoder representations from transformers (BERT) model has attracted considerable attention in clinical applications, such as patient classification and disease prediction. However, current studies have typically progressed to application development without a thorough assessment of the model's comprehension of clinical context. Furthermore, limited comparative studies have been conducted on BERT models using medical documents from non-English-speaking countries. Therefore, the applicability of BERT models trained on English clinical notes to non-English contexts is yet to be confirmed. To address these gaps in literature, this study focused on identifying the most effective BERT model for non-English clinical notes.</p><p><strong>Objective: </strong>In this study, we evaluated the contextual understanding abilities of various BERT models applied to mixed Korean and English clinical notes. The objective of this study was to identify the BERT model that excels in understanding the context of such documents.</p><p><strong>Methods: </strong>Using data from 164,460 patients in a South Korean tertiary hospital, we pretrained BERT-base, BERT for Biomedical Text Mining (BioBERT), Korean BERT (KoBERT), and Multilingual BERT (M-BERT) to improve their contextual comprehension capabilities and subsequently compared their performances in 7 fine-tuning tasks.</p><p><strong>Results: </strong>The model performance varied based on the task and token usage. First, BERT-base and BioBERT excelled in tasks using classification ([CLS]) token embeddings, such as document classification. BioBERT achieved the highest F1-score of 89.32. Both BERT-base and BioBERT demonstrated their effectiveness in document pattern recognition, even with limited Korean tokens in the dictionary. Second, M-BERT exhibited a superior performance in reading comprehension tasks, achieving an F1-score of 93.77. Better results were obtained when fewer words were replaced with unknown ([UNK]) tokens. Third, M-BERT excelled in the knowledge inference task in which correct disease names were inferred from 63 candidate disease names in a document with disease names replaced with [MASK] tokens. M-BERT achieved the highest hit@10 score of 95.41.</p><p><strong>Conclusions: </strong>This study highlighted the effectiveness of various BERT models in a multilingual clinical domain. The findings can be used as a reference in clinical and language-based applications.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e52897"},"PeriodicalIF":3.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Natural Language Processing-Inspired Methodology (Detection, Initial Characterization, and Semantic Characterization) to Investigate Temporal Shifts (Drifts) in Health Care Data: Quantitative Study. 一种受自然语言处理启发的新方法(检测、初始特征描述和语义特征描述),用于调查医疗保健数据中的时空转移(漂移):定量研究。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-10-28 DOI: 10.2196/54246
Bruno Paiva, Marcos André Gonçalves, Leonardo Chaves Dutra da Rocha, Milena Soriano Marcolino, Fernanda Cristina Barbosa Lana, Maira Viana Rego Souza-Silva, Jussara M Almeida, Polianna Delfino Pereira, Claudio Moisés Valiense de Andrade, Angélica Gomides Dos Reis Gomes, Maria Angélica Pires Ferreira, Frederico Bartolazzi, Manuela Furtado Sacioto, Ana Paula Boscato, Milton Henriques Guimarães-Júnior, Priscilla Pereira Dos Reis, Felício Roberto Costa, Alzira de Oliveira Jorge, Laryssa Reis Coelho, Marcelo Carneiro, Thaís Lorenna Souza Sales, Silvia Ferreira Araújo, Daniel Vitório Silveira, Karen Brasil Ruschel, Fernanda Caldeira Veloso Santos, Evelin Paola de Almeida Cenci, Luanna Silva Monteiro Menezes, Fernando Anschau, Maria Aparecida Camargos Bicalho, Euler Roberto Fernandes Manenti, Renan Goulart Finger, Daniela Ponce, Filipe Carrilho de Aguiar, Luiza Margoto Marques, Luís César de Castro, Giovanna Grünewald Vietta, Mariana Frizzo de Godoy, Mariana do Nascimento Vilaça, Vivian Costa Morais
{"title":"A New Natural Language Processing-Inspired Methodology (Detection, Initial Characterization, and Semantic Characterization) to Investigate Temporal Shifts (Drifts) in Health Care Data: Quantitative Study.","authors":"Bruno Paiva, Marcos André Gonçalves, Leonardo Chaves Dutra da Rocha, Milena Soriano Marcolino, Fernanda Cristina Barbosa Lana, Maira Viana Rego Souza-Silva, Jussara M Almeida, Polianna Delfino Pereira, Claudio Moisés Valiense de Andrade, Angélica Gomides Dos Reis Gomes, Maria Angélica Pires Ferreira, Frederico Bartolazzi, Manuela Furtado Sacioto, Ana Paula Boscato, Milton Henriques Guimarães-Júnior, Priscilla Pereira Dos Reis, Felício Roberto Costa, Alzira de Oliveira Jorge, Laryssa Reis Coelho, Marcelo Carneiro, Thaís Lorenna Souza Sales, Silvia Ferreira Araújo, Daniel Vitório Silveira, Karen Brasil Ruschel, Fernanda Caldeira Veloso Santos, Evelin Paola de Almeida Cenci, Luanna Silva Monteiro Menezes, Fernando Anschau, Maria Aparecida Camargos Bicalho, Euler Roberto Fernandes Manenti, Renan Goulart Finger, Daniela Ponce, Filipe Carrilho de Aguiar, Luiza Margoto Marques, Luís César de Castro, Giovanna Grünewald Vietta, Mariana Frizzo de Godoy, Mariana do Nascimento Vilaça, Vivian Costa Morais","doi":"10.2196/54246","DOIUrl":"10.2196/54246","url":null,"abstract":"<p><strong>Background: </strong>Proper analysis and interpretation of health care data can significantly improve patient outcomes by enhancing services and revealing the impacts of new technologies and treatments. Understanding the substantial impact of temporal shifts in these data is crucial. For example, COVID-19 vaccination initially lowered the mean age of at-risk patients and later changed the characteristics of those who died. This highlights the importance of understanding these shifts for assessing factors that affect patient outcomes.</p><p><strong>Objective: </strong>This study aims to propose detection, initial characterization, and semantic characterization (DIS), a new methodology for analyzing changes in health outcomes and variables over time while discovering contextual changes for outcomes in large volumes of data.</p><p><strong>Methods: </strong>The DIS methodology involves 3 steps: detection, initial characterization, and semantic characterization. Detection uses metrics such as Jensen-Shannon divergence to identify significant data drifts. Initial characterization offers a global analysis of changes in data distribution and predictive feature significance over time. Semantic characterization uses natural language processing-inspired techniques to understand the local context of these changes, helping identify factors driving changes in patient outcomes. By integrating the outcomes from these 3 steps, our results can identify specific factors (eg, interventions and modifications in health care practices) that drive changes in patient outcomes. DIS was applied to the Brazilian COVID-19 Registry and the Medical Information Mart for Intensive Care, version IV (MIMIC-IV) data sets.</p><p><strong>Results: </strong>Our approach allowed us to (1) identify drifts effectively, especially using metrics such as the Jensen-Shannon divergence, and (2) uncover reasons for the decline in overall mortality in both the COVID-19 and MIMIC-IV data sets, as well as changes in the cooccurrence between different diseases and this particular outcome. Factors such as vaccination during the COVID-19 pandemic and reduced iatrogenic events and cancer-related deaths in MIMIC-IV were highlighted. The methodology also pinpointed shifts in patient demographics and disease patterns, providing insights into the evolving health care landscape during the study period.</p><p><strong>Conclusions: </strong>We developed a novel methodology combining machine learning and natural language processing techniques to detect, characterize, and understand temporal shifts in health care data. This understanding can enhance predictive algorithms, improve patient outcomes, and optimize health care resource allocation, ultimately improving the effectiveness of machine learning predictive algorithms applied to health care data. Our methodology can be applied to a variety of scenarios beyond those discussed in this paper.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e54246"},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive Models for Sustained, Uncontrolled Hypertension and Hypertensive Crisis Based on Electronic Health Record Data: Algorithm Development and Validation. 基于电子健康记录数据的持续、失控高血压和高血压危机预测模型:算法开发与验证。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-10-28 DOI: 10.2196/58732
Hieu Minh Nguyen, William Anderson, Shih-Hsiung Chou, Andrew McWilliams, Jing Zhao, Nicholas Pajewski, Yhenneko Taylor
{"title":"Predictive Models for Sustained, Uncontrolled Hypertension and Hypertensive Crisis Based on Electronic Health Record Data: Algorithm Development and Validation.","authors":"Hieu Minh Nguyen, William Anderson, Shih-Hsiung Chou, Andrew McWilliams, Jing Zhao, Nicholas Pajewski, Yhenneko Taylor","doi":"10.2196/58732","DOIUrl":"10.2196/58732","url":null,"abstract":"<p><strong>Background: </strong>Assessing disease progression among patients with uncontrolled hypertension is important for identifying opportunities for intervention.</p><p><strong>Objective: </strong>We aim to develop and validate 2 models, one to predict sustained, uncontrolled hypertension (≥2 blood pressure [BP] readings ≥140/90 mm Hg or ≥1 BP reading ≥180/120 mm Hg) and one to predict hypertensive crisis (≥1 BP reading ≥180/120 mm Hg) within 1 year of an index visit (outpatient or ambulatory encounter in which an uncontrolled BP reading was recorded).</p><p><strong>Methods: </strong>Data from 142,897 patients with uncontrolled hypertension within Atrium Health Greater Charlotte in 2018 were used. Electronic health record-based predictors were based on the 1-year period before a patient's index visit. The dataset was randomly split (80:20) into a training set and a validation set. In total, 4 machine learning frameworks were considered: L2-regularized logistic regression, multilayer perceptron, gradient boosting machines, and random forest. Model selection was performed with 10-fold cross-validation. The final models were assessed on discrimination (C-statistic), calibration (eg, integrated calibration index), and net benefit (with decision curve analysis). Additionally, internal-external cross-validation was performed at the county level to assess performance with new populations and summarized using random-effect meta-analyses.</p><p><strong>Results: </strong>In internal validation, the C-statistic and integrated calibration index were 0.72 (95% CI 0.71-0.72) and 0.015 (95% CI 0.012-0.020) for the sustained, uncontrolled hypertension model, and 0.81 (95% CI 0.79-0.82) and 0.009 (95% CI 0.007-0.011) for the hypertensive crisis model. The models had higher net benefit than the default policies (ie, treat-all and treat-none) across different decision thresholds. In internal-external cross-validation, the pooled performance was consistent with internal validation results; in particular, the pooled C-statistics were 0.70 (95% CI 0.69-0.71) and 0.79 (95% CI 0.78-0.81) for the sustained, uncontrolled hypertension model and hypertensive crisis model, respectively.</p><p><strong>Conclusions: </strong>An electronic health record-based model predicted hypertensive crisis reasonably well in internal and internal-external validations. The model can potentially be used to support population health surveillance and hypertension management. Further studies are needed to improve the ability to predict sustained, uncontrolled hypertension.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e58732"},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of International Classification of Disease-Triggered Prescription Support on Telemedicine: Observational Analysis of Efficiency and Guideline Adherence. 国际疾病分类》触发式处方支持对远程医疗的影响:对效率和指南遵守情况的观察分析。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-10-25 DOI: 10.2196/56681
Tarso Augusto Duenhas Accorsi, Anderson Aires Eduardo, Carlos Guilherme Baptista, Flavio Tocci Moreira, Renata Albaladejo Morbeck, Karen Francine Köhler, Karine de Amicis Lima, Carlos Henrique Sartorato Pedrotti
{"title":"The Impact of International Classification of Disease-Triggered Prescription Support on Telemedicine: Observational Analysis of Efficiency and Guideline Adherence.","authors":"Tarso Augusto Duenhas Accorsi, Anderson Aires Eduardo, Carlos Guilherme Baptista, Flavio Tocci Moreira, Renata Albaladejo Morbeck, Karen Francine Köhler, Karine de Amicis Lima, Carlos Henrique Sartorato Pedrotti","doi":"10.2196/56681","DOIUrl":"10.2196/56681","url":null,"abstract":"<p><strong>Background: </strong>Integrating decision support systems into telemedicine may optimize consultation efficiency and adherence to clinical guidelines; however, the extent of such effects remains underexplored.</p><p><strong>Objective: </strong>This study aims to evaluate the use of ICD (International Classification of Disease)-coded prescription decision support systems (PDSSs) and the effects of these systems on consultation duration and guideline adherence during telemedicine encounters.</p><p><strong>Methods: </strong>In this retrospective, single-center, observational study conducted from October 2021 to March 2022, adult patients who sought urgent digital care via direct-to-consumer video consultations were included. Physicians had access to current guidelines and could use an ICD-triggered PDSS (which was introduced in January 2022 after a preliminary test in the preceding month) for 26 guideline-based conditions. This study analyzed the impact of implementing automated prescription systems and compared these systems to manual prescription processes in terms of consultation duration and guideline adherence.</p><p><strong>Results: </strong>This study included 10,485 telemedicine encounters involving 9644 patients, with 12,346 prescriptions issued by 290 physicians. Automated prescriptions were used in 5022 (40.67%) of the consultations following system integration. Before introducing decision support, 4497 (36.42%) prescriptions were issued, which increased to 7849 (63.57%) postimplementation. The physician's average consultation time decreased significantly to 9.5 (SD 5.5) minutes from 11.2 (SD 5.9) minutes after PDSS implementation (P<.001). Of the 12,346 prescriptions, 8683 (70.34%) were aligned with disease-specific international guidelines tailored for telemedicine encounters. Primary medication adherence in accordance with existing guidelines was significantly greater in the decision support group than in the manual group (n=4697, 93.53% vs n=1389, 49.14%; P<.001).</p><p><strong>Conclusions: </strong>Most of the physicians adopted the PDSS, and the results demonstrated the use of the ICD-code system in reducing consultation times and increasing guideline adherence. These systems appear to be valuable for enhancing the efficiency and quality of telemedicine consultations by supporting evidence-based clinical decision-making.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e56681"},"PeriodicalIF":3.1,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549578/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted Development and Validation of Clinical Prediction Models in Secondary Care Settings: Opportunities and Challenges for Electronic Health Record Data. 二级医疗机构临床预测模型的针对性开发与验证:电子健康记录数据的机遇与挑战。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-10-24 DOI: 10.2196/57035
I S van Maurik, H J Doodeman, B W Veeger-Nuijens, R P M Möhringer, D R Sudiono, W Jongbloed, E van Soelen
{"title":"Targeted Development and Validation of Clinical Prediction Models in Secondary Care Settings: Opportunities and Challenges for Electronic Health Record Data.","authors":"I S van Maurik, H J Doodeman, B W Veeger-Nuijens, R P M Möhringer, D R Sudiono, W Jongbloed, E van Soelen","doi":"10.2196/57035","DOIUrl":"https://doi.org/10.2196/57035","url":null,"abstract":"<p><strong>Unlabelled: </strong>Before deploying a clinical prediction model (CPM) in clinical practice, its performance needs to be demonstrated in the population of intended use. This is also called \"targeted validation.\" Many CPMs developed in tertiary settings may be most useful in secondary care, where the patient case mix is broad and practitioners need to triage patients efficiently. However, since structured or rich datasets of sufficient quality from secondary to assess the performance of a CPM are scarce, a validation gap exists that hampers the implementation of CPMs in secondary care settings. In this viewpoint, we highlight the importance of targeted validation and the use of CPMs in secondary care settings and discuss the potential and challenges of using electronic health record (EHR) data to overcome the existing validation gap. The introduction of software applications for text mining of EHRs allows the generation of structured \"big\" datasets, but the imperfection of EHRs as a research database requires careful validation of data quality. When using EHR data for the development and validation of CPMs, in addition to widely accepted checklists, we propose considering three additional practical steps: (1) involve a local EHR expert (clinician or nurse) in the data extraction process, (2) perform validity checks on the generated datasets, and (3) provide metadata on how variables were constructed from EHRs. These steps help to generate EHR datasets that are statistically powerful, of sufficient quality and replicable, and enable targeted development and validation of CPMs in secondary care settings. This approach can fill a major gap in prediction modeling research and appropriately advance CPMs into clinical practice.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e57035"},"PeriodicalIF":3.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating Evidence Synthesis in Observational Studies: Development of a Living Natural Language Processing-Assisted Intelligent Systematic Literature Review System. 加速观察研究中的证据综合:开发活的自然语言处理辅助智能系统文献综述系统。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-10-23 DOI: 10.2196/54653
Frank J Manion, Jingcheng Du, Dong Wang, Long He, Bin Lin, Jingqi Wang, Siwei Wang, David Eckels, Jan Cervenka, Peter C Fiduccia, Nicole Cossrow, Lixia Yao
{"title":"Accelerating Evidence Synthesis in Observational Studies: Development of a Living Natural Language Processing-Assisted Intelligent Systematic Literature Review System.","authors":"Frank J Manion, Jingcheng Du, Dong Wang, Long He, Bin Lin, Jingqi Wang, Siwei Wang, David Eckels, Jan Cervenka, Peter C Fiduccia, Nicole Cossrow, Lixia Yao","doi":"10.2196/54653","DOIUrl":"10.2196/54653","url":null,"abstract":"<p><strong>Background: </strong>Systematic literature review (SLR), a robust method to identify and summarize evidence from published sources, is considered to be a complex, time-consuming, labor-intensive, and expensive task.</p><p><strong>Objective: </strong>This study aimed to present a solution based on natural language processing (NLP) that accelerates and streamlines the SLR process for observational studies using real-world data.</p><p><strong>Methods: </strong>We followed an agile software development and iterative software engineering methodology to build a customized intelligent end-to-end living NLP-assisted solution for observational SLR tasks. Multiple machine learning-based NLP algorithms were adopted to automate article screening and data element extraction processes. The NLP prediction results can be further reviewed and verified by domain experts, following the human-in-the-loop design. The system integrates explainable articificial intelligence to provide evidence for NLP algorithms and add transparency to extracted literature data elements. The system was developed based on 3 existing SLR projects of observational studies, including the epidemiology studies of human papillomavirus-associated diseases, the disease burden of pneumococcal diseases, and cost-effectiveness studies on pneumococcal vaccines.</p><p><strong>Results: </strong>Our Intelligent SLR Platform covers major SLR steps, including study protocol setting, literature retrieval, abstract screening, full-text screening, data element extraction from full-text articles, results summary, and data visualization. The NLP algorithms achieved accuracy scores of 0.86-0.90 on article screening tasks (framed as text classification tasks) and macroaverage F1 scores of 0.57-0.89 on data element extraction tasks (framed as named entity recognition tasks).</p><p><strong>Conclusions: </strong>Cutting-edge NLP algorithms expedite SLR for observational studies, thus allowing scientists to have more time to focus on the quality of data and the synthesis of evidence in observational studies. Aligning the living SLR concept, the system has the potential to update literature data and enable scientists to easily stay current with the literature related to observational studies prospectively and continuously.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e54653"},"PeriodicalIF":3.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523763/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Health Care Professionals' Perspectives on the Use of a Medication and Care Support System and Recommendations for Designing a Similar Tool for Family Caregivers: Interview Study Among Health Care Professionals. 探索医护专业人员对使用药物和护理支持系统的看法,以及为家庭护理人员设计类似工具的建议:医护人员访谈研究。
IF 3.1 3区 医学
JMIR Medical Informatics Pub Date : 2024-10-23 DOI: 10.2196/63456
Aimerence Ashimwe, Nadia Davoody
{"title":"Exploring Health Care Professionals' Perspectives on the Use of a Medication and Care Support System and Recommendations for Designing a Similar Tool for Family Caregivers: Interview Study Among Health Care Professionals.","authors":"Aimerence Ashimwe, Nadia Davoody","doi":"10.2196/63456","DOIUrl":"10.2196/63456","url":null,"abstract":"<p><strong>Background: </strong>With the aging population on the rise, the demand for effective health care solutions to address adverse drug events is becoming increasingly urgent. Telemedicine has emerged as a promising solution for strengthening health care delivery in home care settings and mitigating drug errors. Due to the indispensable role of family caregivers in daily patient care, integrating digital health tools has the potential to streamline medication management processes and enhance the overall quality of patient care.</p><p><strong>Objective: </strong>This study aims to explore health care professionals' perspectives on the use of a medication and care support system (MCSS) and collect recommendations for designing a similar tool for family caregivers.</p><p><strong>Methods: </strong>Fifteen interviews with health care professionals in a home care center were conducted. Thematic analysis was used, and 5 key themes highlighting the importance of using the MCSS tool to improve medication management in home care were identified.</p><p><strong>Results: </strong>All participants emphasized the necessity of direct communication between health care professionals and family caregivers and stated that family caregivers need comprehensive information about medication administration, patient conditions, and symptoms. Furthermore, the health care professionals recommended features and functions customized for family caregivers.</p><p><strong>Conclusions: </strong>This study underscored the importance of clear communication between health care professionals and family caregivers and the provision of comprehensive instructions to promote safe medication practices. By equipping family caregivers with essential information via a tool similar to the MCSS, a proactive approach to preventing errors and improving outcomes is advocated.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e63456"},"PeriodicalIF":3.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信