Arindam Brahma, Samir Chatterjee, Kala Seal, Ben Fitzpatrick, Youyou Tao
{"title":"Development of a Cohort Analytics Tool for Monitoring Progression Patterns in Cardiovascular Diseases: Advanced Stochastic Modeling Approach.","authors":"Arindam Brahma, Samir Chatterjee, Kala Seal, Ben Fitzpatrick, Youyou Tao","doi":"10.2196/59392","DOIUrl":"10.2196/59392","url":null,"abstract":"<p><strong>Background: </strong>The World Health Organization (WHO) reported that cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVDs are chronic, with complex progression patterns involving episodes of comorbidities and multimorbidities. When dealing with chronic diseases, physicians often adopt a \"watchful waiting\" strategy, and actions are postponed until information is available. Population-level transition probabilities and progression patterns can be revealed by applying time-variant stochastic modeling methods to longitudinal patient data from cohort studies. Inputs from CVD practitioners indicate that tools to generate and visualize cohort transition patterns have many impactful clinical applications. The resultant computational model can be embedded in digital decision support tools for clinicians. However, to date, no study has attempted to accomplish this for CVDs.</p><p><strong>Objective: </strong>This study aims to apply advanced stochastic modeling methods to uncover the transition probabilities and progression patterns from longitudinal episodic data of patient cohorts with CVD and thereafter use the computational model to build a digital clinical cohort analytics artifact demonstrating the actionability of such models.</p><p><strong>Methods: </strong>Our data were sourced from 9 epidemiological cohort studies by the National Heart Lung and Blood Institute and comprised chronological records of 1274 patients associated with 4839 CVD episodes across 16 years. We then used the continuous-time Markov chain method to develop our model, which offers a robust approach to time-variant transitions between disease states in chronic diseases.</p><p><strong>Results: </strong>Our study presents time-variant transition probabilities of CVD state changes, revealing patterns of CVD progression against time. We found that the transition from myocardial infarction (MI) to stroke has the fastest transition rate (mean transition time 3, SD 0 days, because only 1 patient had a MI-to-stroke transition in the dataset), and the transition from MI to angina is the slowest (mean transition time 1457, SD 1449 days). Congestive heart failure is the most probable first episode (371/840, 44.2%), followed by stroke (216/840, 25.7%). The resultant artifact is actionable as it can act as an eHealth cohort analytics tool, helping physicians gain insights into treatment and intervention strategies. Through expert panel interviews and surveys, we found 9 application use cases of our model.</p><p><strong>Conclusions: </strong>Past research does not provide actionable cohort-level decision support tools based on a comprehensive, 10-state, continuous-time Markov chain model to unveil complex CVD progression patterns from real-world patient data and support clinical decision-making. This paper aims to address this crucial limitation. Our stochastic model-embedded artifact can help clinicians in efficient disease monitoring and intervention deci","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e59392"},"PeriodicalIF":3.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parinaz Tabari, Gennaro Costagliola, Mattia De Rosa, Martin Boeker
{"title":"State-of-the-Art Fast Healthcare Interoperability Resources (FHIR)-Based Data Model and Structure Implementations: Systematic Scoping Review.","authors":"Parinaz Tabari, Gennaro Costagliola, Mattia De Rosa, Martin Boeker","doi":"10.2196/58445","DOIUrl":"10.2196/58445","url":null,"abstract":"<p><strong>Background: </strong>Data models are crucial for clinical research as they enable researchers to fully use the vast amount of clinical data stored in medical systems. Standardized data and well-defined relationships between data points are necessary to guarantee semantic interoperability. Using the Fast Healthcare Interoperability Resources (FHIR) standard for clinical data representation would be a practical methodology to enhance and accelerate interoperability and data availability for research.</p><p><strong>Objective: </strong>This research aims to provide a comprehensive overview of the state-of-the-art and current landscape in FHIR-based data models and structures. In addition, we intend to identify and discuss the tools, resources, limitations, and other critical aspects mentioned in the selected research papers.</p><p><strong>Methods: </strong>To ensure the extraction of reliable results, we followed the instructions of the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) checklist. We analyzed the indexed articles in PubMed, Scopus, Web of Science, IEEE Xplore, the ACM Digital Library, and Google Scholar. After identifying, extracting, and assessing the quality and relevance of the articles, we synthesized the extracted data to identify common patterns, themes, and variations in the use of FHIR-based data models and structures across different studies.</p><p><strong>Results: </strong>On the basis of the reviewed articles, we could identify 2 main themes: dynamic (pipeline-based) and static data models. The articles were also categorized into health care use cases, including chronic diseases, COVID-19 and infectious diseases, cancer research, acute or intensive care, random and general medical notes, and other conditions. Furthermore, we summarized the important or common tools and approaches of the selected papers. These items included FHIR-based tools and frameworks, machine learning approaches, and data storage and security. The most common resource was \"Observation\" followed by \"Condition\" and \"Patient.\" The limitations and challenges of developing data models were categorized based on the issues of data integration, interoperability, standardization, performance, and scalability or generalizability.</p><p><strong>Conclusions: </strong>FHIR serves as a highly promising interoperability standard for developing real-world health care apps. The implementation of FHIR modeling for electronic health record data facilitates the integration, transmission, and analysis of data while also advancing translational research and phenotyping. Generally, FHIR-based exports of local data repositories improve data interoperability for systems and data warehouses across different settings. However, ongoing efforts to address existing limitations and challenges are essential for the successful implementation and integration of FHIR data models.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e58445"},"PeriodicalIF":3.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomohiro Nishiyama, Ayane Yamaguchi, Peitao Han, Lis Weiji Kanashiro Pereira, Yuka Otsuki, Gabriel Herman Bernardim Andrade, Noriko Kudo, Shuntaro Yada, Shoko Wakamiya, Eiji Aramaki, Masahiro Takada, Masakazu Toi
{"title":"Automated System to Capture Patient Symptoms From Multitype Japanese Clinical Texts: Retrospective Study.","authors":"Tomohiro Nishiyama, Ayane Yamaguchi, Peitao Han, Lis Weiji Kanashiro Pereira, Yuka Otsuki, Gabriel Herman Bernardim Andrade, Noriko Kudo, Shuntaro Yada, Shoko Wakamiya, Eiji Aramaki, Masahiro Takada, Masakazu Toi","doi":"10.2196/58977","DOIUrl":"10.2196/58977","url":null,"abstract":"<p><strong>Background: </strong>Natural language processing (NLP) techniques can be used to analyze large amounts of electronic health record texts, which encompasses various types of patient information such as quality of life, effectiveness of treatments, and adverse drug event (ADE) signals. As different aspects of a patient's status are stored in different types of documents, we propose an NLP system capable of processing 6 types of documents: physician progress notes, discharge summaries, radiology reports, radioisotope reports, nursing records, and pharmacist progress notes.</p><p><strong>Objective: </strong>This study aimed to investigate the system's performance in detecting ADEs by evaluating the results from multitype texts. The main objective is to detect adverse events accurately using an NLP system.</p><p><strong>Methods: </strong>We used data written in Japanese from 2289 patients with breast cancer, including medication data, physician progress notes, discharge summaries, radiology reports, radioisotope reports, nursing records, and pharmacist progress notes. Our system performs 3 processes: named entity recognition, normalization of symptoms, and aggregation of multiple types of documents from multiple patients. Among all patients with breast cancer, 103 and 112 with peripheral neuropathy (PN) received paclitaxel or docetaxel, respectively. We evaluate the utility of using multiple types of documents by correlation coefficient and regression analysis to compare their performance with each single type of document. All evaluations of detection rates with our system are performed 30 days after drug administration.</p><p><strong>Results: </strong>Our system underestimates by 13.3 percentage points (74.0%-60.7%), as the incidence of paclitaxel-induced PN was 60.7%, compared with 74.0% in the previous research based on manual extraction. The Pearson correlation coefficient between the manual extraction and system results was 0.87 Although the pharmacist progress notes had the highest detection rate among each type of document, the rate did not match the performance using all documents. The estimated median duration of PN with paclitaxel was 92 days, whereas the previously reported median duration of PN with paclitaxel was 727 days. The number of events detected in each document was highest in the physician's progress notes, followed by the pharmacist's and nursing records.</p><p><strong>Conclusions: </strong>Considering the inherent cost that requires constant monitoring of the patient's condition, such as the treatment of PN, our system has a significant advantage in that it can immediately estimate the treatment duration without fine-tuning a new NLP model. Leveraging multitype documents is better than using single-type documents to improve detection performance. Although the onset time estimation was relatively accurate, the duration might have been influenced by the length of the data follow-up period. The results suggest that our m","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e58977"},"PeriodicalIF":3.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462096/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Uhl, Vincent Augusto, Benjamin Dalmas, Youenn Alexandre, Paolo Bercelli, Fanny Jardinaud, Saber Aloui
{"title":"Evaluating the Bias in Hospital Data: Automatic Preprocessing of Patient Pathways Algorithm Development and Validation Study.","authors":"Laura Uhl, Vincent Augusto, Benjamin Dalmas, Youenn Alexandre, Paolo Bercelli, Fanny Jardinaud, Saber Aloui","doi":"10.2196/58978","DOIUrl":"10.2196/58978","url":null,"abstract":"<p><strong>Background: </strong>The optimization of patient care pathways is crucial for hospital managers in the context of a scarcity of medical resources. Assuming unlimited capacities, the pathway of a patient would only be governed by pure medical logic to meet at best the patient's needs. However, logistical limitations (eg, resources such as inpatient beds) are often associated with delayed treatments and may ultimately affect patient pathways. This is especially true for unscheduled patients-when a patient in the emergency department needs to be admitted to another medical unit without disturbing the flow of planned hospitalizations.</p><p><strong>Objective: </strong>In this study, we proposed a new framework to automatically detect activities in patient pathways that may be unrelated to patients' needs but rather induced by logistical limitations.</p><p><strong>Methods: </strong>The scientific contribution lies in a method that transforms a database of historical pathways with bias into 2 databases: a labeled pathway database where each activity is labeled as relevant (related to a patient's needs) or irrelevant (induced by logistical limitations) and a corrected pathway database where each activity corresponds to the activity that would occur assuming unlimited resources. The labeling algorithm was assessed through medical expertise. In total, 2 case studies quantified the impact of our method of preprocessing health care data using process mining and discrete event simulation.</p><p><strong>Results: </strong>Focusing on unscheduled patient pathways, we collected data covering 12 months of activity at the Groupe Hospitalier Bretagne Sud in France. Our algorithm had 87% accuracy and demonstrated its usefulness for preprocessing traces and obtaining a clean database. The 2 case studies showed the importance of our preprocessing step before any analysis. The process graphs of the processed data had, on average, 40% (SD 10%) fewer variants than the raw data. The simulation revealed that 30% of the medical units had >1 bed difference in capacity between the processed and raw data.</p><p><strong>Conclusions: </strong>Patient pathway data reflect the actual activity of hospitals that is governed by medical requirements and logistical limitations. Before using these data, these limitations should be identified and corrected. We anticipate that our approach can be generalized to obtain unbiased analyses of patient pathways for other hospitals.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e58978"},"PeriodicalIF":3.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lingyu Xu, Chenyu Li, Shuang Gao, Long Zhao, Chen Guan, Xuefei Shen, Zhihui Zhu, Cheng Guo, Liwei Zhang, Chengyu Yang, Quandong Bu, Bin Zhou, Yan Xu
{"title":"Personalized Prediction of Long-Term Renal Function Prognosis Following Nephrectomy Using Interpretable Machine Learning Algorithms: Case-Control Study.","authors":"Lingyu Xu, Chenyu Li, Shuang Gao, Long Zhao, Chen Guan, Xuefei Shen, Zhihui Zhu, Cheng Guo, Liwei Zhang, Chengyu Yang, Quandong Bu, Bin Zhou, Yan Xu","doi":"10.2196/52837","DOIUrl":"10.2196/52837","url":null,"abstract":"<p><strong>Background: </strong>Acute kidney injury (AKI) is a common adverse outcome following nephrectomy. The progression from AKI to acute kidney disease (AKD) and subsequently to chronic kidney disease (CKD) remains a concern; yet, the predictive mechanisms for these transitions are not fully understood. Interpretable machine learning (ML) models offer insights into how clinical features influence long-term renal function outcomes after nephrectomy, providing a more precise framework for identifying patients at risk and supporting improved clinical decision-making processes.</p><p><strong>Objective: </strong>This study aimed to (1) evaluate postnephrectomy rates of AKI, AKD, and CKD, analyzing long-term renal outcomes along different trajectories; (2) interpret AKD and CKD models using Shapley Additive Explanations values and Local Interpretable Model-Agnostic Explanations algorithm; and (3) develop a web-based tool for estimating AKD or CKD risk after nephrectomy.</p><p><strong>Methods: </strong>We conducted a retrospective cohort study involving patients who underwent nephrectomy between July 2012 and June 2019. Patient data were randomly split into training, validation, and test sets, maintaining a ratio of 76.5:8.5:15. Eight ML algorithms were used to construct predictive models for postoperative AKD and CKD. The performance of the best-performing models was assessed using various metrics. We used various Shapley Additive Explanations plots and Local Interpretable Model-Agnostic Explanations bar plots to interpret the model and generated directed acyclic graphs to explore the potential causal relationships between features. Additionally, we developed a web-based prediction tool using the top 10 features for AKD prediction and the top 5 features for CKD prediction.</p><p><strong>Results: </strong>The study cohort comprised 1559 patients. Incidence rates for AKI, AKD, and CKD were 21.7% (n=330), 15.3% (n=238), and 10.6% (n=165), respectively. Among the evaluated ML models, the Light Gradient-Boosting Machine (LightGBM) model demonstrated superior performance, with an area under the receiver operating characteristic curve of 0.97 for AKD prediction and 0.96 for CKD prediction. Performance metrics and plots highlighted the model's competence in discrimination, calibration, and clinical applicability. Operative duration, hemoglobin, blood loss, urine protein, and hematocrit were identified as the top 5 features associated with predicted AKD. Baseline estimated glomerular filtration rate, pathology, trajectories of renal function, age, and total bilirubin were the top 5 features associated with predicted CKD. Additionally, we developed a web application using the LightGBM model to estimate AKD and CKD risks.</p><p><strong>Conclusions: </strong>An interpretable ML model effectively elucidated its decision-making process in identifying patients at risk of AKD and CKD following nephrectomy by enumerating critical features. The web-based calculato","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e52837"},"PeriodicalIF":3.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victoria Stanhope, Nari Yoo, Elizabeth Matthews, Daniel Baslock, Yuanyuan Hu
{"title":"The Impact of Collaborative Documentation on Person-Centered Care: Textual Analysis of Clinical Notes.","authors":"Victoria Stanhope, Nari Yoo, Elizabeth Matthews, Daniel Baslock, Yuanyuan Hu","doi":"10.2196/52678","DOIUrl":"10.2196/52678","url":null,"abstract":"<p><strong>Background: </strong>Collaborative documentation (CD) is a behavioral health practice involving shared writing of clinic visit notes by providers and consumers. Despite widespread dissemination of CD, research on its effectiveness or impact on person-centered care (PCC) has been limited. Principles of PCC planning, a recovery-based approach to service planning that operationalizes PCC, can inform the measurement of person-centeredness within clinical documentation.</p><p><strong>Objective: </strong>This study aims to use the clinical informatics approach of natural language processing (NLP) to examine the impact of CD on person-centeredness in clinic visit notes. Using a dictionary-based approach, this study conducts a textual analysis of clinic notes from a community mental health center before and after staff were trained in CD.</p><p><strong>Methods: </strong>This study used visit notes (n=1981) from 10 providers in a community mental health center 6 months before and after training in CD. LIWC-22 was used to assess all notes using the Linguistic Inquiry and Word Count (LIWC) dictionary, which categorizes over 5000 linguistic and psychological words. Twelve LIWC categories were selected and mapped onto PCC planning principles through the consensus of 3 domain experts. The LIWC-22 contextualizer was used to extract sentence fragments from notes corresponding to LIWC categories. Then, fixed-effects modeling was used to identify differences in notes before and after CD training while accounting for nesting within the provider.</p><p><strong>Results: </strong>Sentence fragments identified by the contextualizing process illustrated how visit notes demonstrated PCC. The fixed effects analysis found a significant positive shift toward person-centeredness; this was observed in 6 of the selected LIWC categories post CD. Specifically, there was a notable increase in words associated with achievement (β=.774, P<.001), power (β=.831, P<.001), money (β=.204, P<.001), physical health (β=.427, P=.03), while leisure words decreased (β=-.166, P=.002).</p><p><strong>Conclusions: </strong>By using a dictionary-based approach, the study identified how CD might influence the integration of PCC principles within clinical notes. Although the results were mixed, the findings highlight the potential effectiveness of CD in enhancing person-centeredness in clinic notes. By leveraging NLP techniques, this research illuminated the value of narrative clinical notes in assessing the quality of care in behavioral health contexts. These findings underscore the promise of NLP for quality assurance in health care settings and emphasize the need for refining algorithms to more accurately measure PCC.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e52678"},"PeriodicalIF":3.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tessa Ohlsen, Josef Ingenerf, Andrea Essenwanger, Cora Drenkhahn
{"title":"PCEtoFHIR: Decomposition of Postcoordinated SNOMED CT Expressions for Storage as HL7 FHIR Resources","authors":"Tessa Ohlsen, Josef Ingenerf, Andrea Essenwanger, Cora Drenkhahn","doi":"10.2196/57853","DOIUrl":"https://doi.org/10.2196/57853","url":null,"abstract":"<strong>Background:</strong> To ensure interoperability, both structural and semantic standards must be followed. For exchanging medical data between information systems, the structural standard FHIR (Fast Healthcare Interoperability Resources) has recently gained popularity. Regarding semantic interoperability, the reference terminology SNOMED Clinical Terms (SNOMED CT), as a semantic standard, allows for postcoordination, offering advantages over many other vocabularies. These postcoordinated expressions (PCEs) make SNOMED CT an expressive and flexible interlingua, allowing for precise coding of medical facts. However, this comes at the cost of increased complexity, as well as challenges in storage and processing. Additionally, the boundary between semantic (terminology) and structural (information model) standards becomes blurred, leading to what is known as the TermInfo problem. Although often viewed critically, the TermInfo overlap can also be explored for its potential benefits, such as enabling flexible transformation of parts of PCEs. <strong>Objective:</strong> In this paper, an alternative solution for storing PCEs is presented, which involves combining them with the FHIR data model. Ultimately, all components of a PCE should be expressible solely through precoordinated concepts that are linked to the appropriate elements of the information model. <strong>Methods:</strong> The approach involves storing PCEs decomposed into their components in alignment with FHIR resources. By utilizing the Web Ontology Language (OWL) to generate an OWL ClassExpression, and combining it with an external reasoner and semantic similarity measures, a precoordinated SNOMED CT concept that most accurately describes the PCE is identified as a Superconcept. In addition, the nonmatching attribute relationships between the Superconcept and the PCE are identified as the “Delta.” Once SNOMED CT attributes are manually mapped to FHIR elements, FHIRPath expressions can be defined for both the Superconcept and the Delta, allowing the identified precoordinated codes to be stored within FHIR resources. <strong>Results:</strong> A web application called PCEtoFHIR was developed to implement this approach. In a validation process with 600 randomly selected precoordinated concepts, the formal correctness of the generated OWL ClassExpressions was verified. Additionally, 33 PCEs were used for two separate validation tests. Based on these validations, it was demonstrated that a previously proposed semantic similarity calculation is suitable for determining the Superconcept. Additionally, the 33 PCEs were used to confirm the correct functioning of the entire approach. Furthermore, the FHIR StructureMaps were reviewed and deemed meaningful by FHIR experts. <strong>Conclusions:</strong> PCEtoFHIR offers services to decompose PCEs for storage within FHIR resources. When creating structure mappings for specific subdomains of SNOMED CT concepts (eg, allergies) to desired FHIR profil","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"29 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diana Ferreira, Cristiana Neto, Francini Hak, António Abelha, Manuel Santos, José Machado
{"title":"Standardizing Corneal Transplantation Records Using openEHR: Case Study","authors":"Diana Ferreira, Cristiana Neto, Francini Hak, António Abelha, Manuel Santos, José Machado","doi":"10.2196/48407","DOIUrl":"https://doi.org/10.2196/48407","url":null,"abstract":"<strong>Background:</strong> Corneal transplantation, also known as keratoplasty, is a widely performed surgical procedure that aims to restore vision in patients with corneal damage. The success of corneal transplantation relies on the accurate and timely management of patient information, which can be enhanced using electronic health records (EHRs). However, conventional EHRs are often fragmented and lack standardization, leading to difficulties in information access and sharing, increased medical errors, and decreased patient safety. In the wake of these problems, there is a growing demand for standardized EHRs that can ensure the accuracy and consistency of patient data across health care organizations. <strong>Objective:</strong> This paper proposes the use of openEHR structures for standardizing corneal transplantation records. The main objective of this research was to improve the quality and interoperability of EHRs in corneal transplantation, making it easier for health care providers to capture, share, and analyze clinical information. <strong>Methods:</strong> A series of sequential steps were carried out in this study to implement standardized clinical records using openEHR specifications. These specifications furnish a methodical approach that ascertains the development of high-quality clinical records. In broad terms, the methodology followed encompasses the conduction of meetings with health care professionals and the modeling of archetypes, templates, forms, decision rules, and work plans. <strong>Results:</strong> This research resulted in a tailored solution that streamlines health care delivery and meets the needs of medical professionals involved in the corneal transplantation process while seamlessly aligning with contemporary clinical practices. The proposed solution culminated in the successful integration within a Portuguese hospital of 3 key components of openEHR specifications: forms, Decision Logic Modules, and Work Plans. A statistical analysis of data collected from May 1, 2022, to March 31, 2023, allowed for the perception of the use of the new technologies within the corneal transplantation workflow. Despite the completion rate being only 63.9% (530/830), which can be explained by external factors such as patient health and availability of donor organs, there was an overall improvement in terms of task control and follow-up of the patients’ clinical process. <strong>Conclusions:</strong> This study shows that the adoption of openEHR structures represents a significant step forward in the standardization and optimization of corneal transplantation records. It offers a detailed demonstration of how to implement openEHR specifications and highlights the different advantages of standardizing EHRs in the field of corneal transplantation. Furthermore, it serves as a valuable reference for researchers and practitioners who are interested in advancing and improving the exploitation of EHRs in health care.","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"78 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Early Diagnosis of Hereditary Angioedema in Japan Based on a US Medical Dataset: Algorithm Development and Validation","authors":"Kouhei Yamashita, Yuji Nomoto, Tomoya Hirose, Akira Yutani, Akira Okada, Nayu Watanabe, Ken Suzuki, Munenori Senzaki, Tomohiro Kuroda","doi":"10.2196/59858","DOIUrl":"https://doi.org/10.2196/59858","url":null,"abstract":"<strong>Background:</strong> Hereditary angioedema (HAE), a rare genetic disease, induces acute attacks of swelling in various regions of the body. Its prevalence is estimated to be 1 in 50,000 people, with no reported bias among different ethnic groups. However, considering the estimated prevalence, the number of patients in Japan diagnosed with HAE remains approximately 1 in 250,000, which means that only 20% of potential HAE cases are identified. <strong>Objective:</strong> This study aimed to develop an artificial intelligence (AI) model that can detect patients with suspected HAE using medical history data (medical claims, prescriptions, and electronic medical records [EMRs]) in the United States. We also aimed to validate the detection performance of the model for HAE cases using the Japanese dataset. <strong>Methods:</strong> The HAE patient and control groups were identified using the US claims and EMR datasets. We analyzed the characteristics of the diagnostic history of patients with HAE and developed an AI model to predict the probability of HAE based on a generalized linear model and bootstrap method. The model was then applied to the EMR data of the Kyoto University Hospital to verify its applicability to the Japanese dataset. <strong>Results:</strong> Precision and sensitivity were measured to validate the model performance. Using the comprehensive US dataset, the precision score was 2% in the initial model development step. Our model can screen out suspected patients, where 1 in 50 of these patients have HAE. In addition, in the validation step with Japanese EMR data, the precision score was 23.6%, which exceeded our expectations. We achieved a sensitivity score of 61.5% for the US dataset and 37.6% for the validation exercise using data from a single Japanese hospital. Overall, our model could predict patients with typical HAE symptoms. <strong>Conclusions:</strong> This study indicates that our AI model can detect HAE in patients with typical symptoms and is effective in Japanese data. However, further prospective clinical studies are required to investigate whether this model can be used to diagnose HAE.","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"17 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengyi Zheng, Bradley Ackerson, Sijia Qiu, Lina S Sy, Leticia I Vega Daily, Jeannie Song, Lei Qian, Yi Luo, Jennifer H Ku, Yanjun Cheng, Jun Wu, Hung Fu Tseng
{"title":"Natural Language Processing Versus Diagnosis Code–Based Methods for Postherpetic Neuralgia Identification: Algorithm Development and Validation","authors":"Chengyi Zheng, Bradley Ackerson, Sijia Qiu, Lina S Sy, Leticia I Vega Daily, Jeannie Song, Lei Qian, Yi Luo, Jennifer H Ku, Yanjun Cheng, Jun Wu, Hung Fu Tseng","doi":"10.2196/57949","DOIUrl":"https://doi.org/10.2196/57949","url":null,"abstract":"Background: Diagnosis codes and prescription data are used in algorithms to identify postherpetic neuralgia (PHN), a debilitating complication of herpes zoster (HZ). Because of the questionable accuracy of codes and prescription data, manual chart review is sometimes used to identify PHN in electronic health records (EHR), which can be costly and time-consuming. Objective: To develop and validate a natural language processing (NLP) algorithm for automatically identifying PHN from unstructured EHR data. To compare its performance with that of code-based methods. Methods: This retrospective study used EHR data from Kaiser Permanente Southern California, a large integrated healthcare system that serves over 4.8 million members. The source population included members aged ≥50 years who received an incident HZ diagnosis and accompanying antiviral prescription between 2018-2020 and had ≥1 encounter within 90-180 days of the incident HZ diagnosis. The study team manually reviewed the EHR and identified PHN cases. For NLP development and validation, 500 and 800 random samples from the source population were selected, respectively. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), F-score, and Matthews correlation coefficient (MCC) of NLP and the code-based methods were evaluated using chart-reviewed results as the reference standard. Results: The NLP algorithm identified PHN cases with 90.9% sensitivity, 98.5% specificity, 82.0% PPV, and 99.3% NPV. The composite scores of the NLP algorithm were 0.89 (F-score) and 0.85 (MCC). The prevalences of PHN in the validation data were 6.9% (reference standard), 7.6% (NLP), and 5.4-13.1% (code-based). The code-based methods achieved 52.7-61.8% sensitivity, 89.8-98.4% specificity, 27.6-72.1% PPV, and 96.3-97.1% NPV. The F-scores and MCCs were ranged between 0.45-0.59 and 0.32-0.61, respectively. Conclusions: The automated NLP-based approach identified PHN cases from the EHR with good accuracy. This method could be useful in population-based PHN research.","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"56 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}