Anthony Kelly, Esben Kjems Jensen, Eoin Martino Grua, Kim Mathiasen, Pepijn Van de Ven
{"title":"用于心理健康治疗预测的概率综合评分可解释模型:设计研究。","authors":"Anthony Kelly, Esben Kjems Jensen, Eoin Martino Grua, Kim Mathiasen, Pepijn Van de Ven","doi":"10.2196/64617","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Machine learning (ML) systems in health care have the potential to enhance decision-making but often fail to address critical issues such as prediction explainability, confidence, and robustness in a context-based and easily interpretable manner.</p><p><strong>Objective: </strong>This study aimed to design and evaluate an ML model for a future decision support system for clinical psychopathological treatment assessments. The novel ML model is inherently interpretable and transparent. It aims to enhance clinical explainability and trust through a transparent, hierarchical model structure that progresses from questions to scores to classification predictions. The model confidence and robustness were addressed by applying Monte Carlo dropout, a probabilistic method that reveals model uncertainty and confidence.</p><p><strong>Methods: </strong>A model for clinical psychopathological treatment assessments was developed, incorporating a novel ML model structure. The model aimed at enhancing the graphical interpretation of the model outputs and addressing issues of prediction explainability, confidence, and robustness. The proposed ML model was trained and validated using patient questionnaire answers and demographics from a web-based treatment service in Denmark (N=1088).</p><p><strong>Results: </strong>The balanced accuracy score on the test set was 0.79. The precision was ≥0.71 for all 4 prediction classes (depression, panic, social phobia, and specific phobia). The area under the curve for the 4 classes was 0.93, 0.92, 0.91, and 0.98, respectively.</p><p><strong>Conclusions: </strong>We have demonstrated a mental health treatment ML model that supported a graphical interpretation of prediction class probability distributions. Their spread and overlap can inform clinicians of competing treatment possibilities for patients and uncertainty in treatment predictions. With the ML model achieving 79% balanced accuracy, we expect that the model will be clinically useful in both screening new patients and informing clinical interviews.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e64617"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Interpretable Model With Probabilistic Integrated Scoring for Mental Health Treatment Prediction: Design Study.\",\"authors\":\"Anthony Kelly, Esben Kjems Jensen, Eoin Martino Grua, Kim Mathiasen, Pepijn Van de Ven\",\"doi\":\"10.2196/64617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Machine learning (ML) systems in health care have the potential to enhance decision-making but often fail to address critical issues such as prediction explainability, confidence, and robustness in a context-based and easily interpretable manner.</p><p><strong>Objective: </strong>This study aimed to design and evaluate an ML model for a future decision support system for clinical psychopathological treatment assessments. The novel ML model is inherently interpretable and transparent. It aims to enhance clinical explainability and trust through a transparent, hierarchical model structure that progresses from questions to scores to classification predictions. The model confidence and robustness were addressed by applying Monte Carlo dropout, a probabilistic method that reveals model uncertainty and confidence.</p><p><strong>Methods: </strong>A model for clinical psychopathological treatment assessments was developed, incorporating a novel ML model structure. The model aimed at enhancing the graphical interpretation of the model outputs and addressing issues of prediction explainability, confidence, and robustness. The proposed ML model was trained and validated using patient questionnaire answers and demographics from a web-based treatment service in Denmark (N=1088).</p><p><strong>Results: </strong>The balanced accuracy score on the test set was 0.79. The precision was ≥0.71 for all 4 prediction classes (depression, panic, social phobia, and specific phobia). The area under the curve for the 4 classes was 0.93, 0.92, 0.91, and 0.98, respectively.</p><p><strong>Conclusions: </strong>We have demonstrated a mental health treatment ML model that supported a graphical interpretation of prediction class probability distributions. Their spread and overlap can inform clinicians of competing treatment possibilities for patients and uncertainty in treatment predictions. With the ML model achieving 79% balanced accuracy, we expect that the model will be clinically useful in both screening new patients and informing clinical interviews.</p>\",\"PeriodicalId\":56334,\"journal\":{\"name\":\"JMIR Medical Informatics\",\"volume\":\"13 \",\"pages\":\"e64617\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/64617\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/64617","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
An Interpretable Model With Probabilistic Integrated Scoring for Mental Health Treatment Prediction: Design Study.
Background: Machine learning (ML) systems in health care have the potential to enhance decision-making but often fail to address critical issues such as prediction explainability, confidence, and robustness in a context-based and easily interpretable manner.
Objective: This study aimed to design and evaluate an ML model for a future decision support system for clinical psychopathological treatment assessments. The novel ML model is inherently interpretable and transparent. It aims to enhance clinical explainability and trust through a transparent, hierarchical model structure that progresses from questions to scores to classification predictions. The model confidence and robustness were addressed by applying Monte Carlo dropout, a probabilistic method that reveals model uncertainty and confidence.
Methods: A model for clinical psychopathological treatment assessments was developed, incorporating a novel ML model structure. The model aimed at enhancing the graphical interpretation of the model outputs and addressing issues of prediction explainability, confidence, and robustness. The proposed ML model was trained and validated using patient questionnaire answers and demographics from a web-based treatment service in Denmark (N=1088).
Results: The balanced accuracy score on the test set was 0.79. The precision was ≥0.71 for all 4 prediction classes (depression, panic, social phobia, and specific phobia). The area under the curve for the 4 classes was 0.93, 0.92, 0.91, and 0.98, respectively.
Conclusions: We have demonstrated a mental health treatment ML model that supported a graphical interpretation of prediction class probability distributions. Their spread and overlap can inform clinicians of competing treatment possibilities for patients and uncertainty in treatment predictions. With the ML model achieving 79% balanced accuracy, we expect that the model will be clinically useful in both screening new patients and informing clinical interviews.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.