Laura Rosa Baratta, Linlin Xia, Daphne Lew, Elise Eiden, Y Jasmine Wu, Noshir Contractor, Bruce L Lambert, Sunny S Lou, Thomas Kannampallil
{"title":"Networked Behaviors Associated With a Large-Scale Secure Messaging Network: Cross-Sectional Secondary Data Analysis.","authors":"Laura Rosa Baratta, Linlin Xia, Daphne Lew, Elise Eiden, Y Jasmine Wu, Noshir Contractor, Bruce L Lambert, Sunny S Lou, Thomas Kannampallil","doi":"10.2196/66544","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Communication among health care professionals is essential for effective clinical care. Asynchronous text-based clinician communication-secure messaging-is rapidly becoming the preferred mode of communication. The use of secure messaging platforms across health care institutions creates large-scale communication networks that can be used to characterize how interaction structures affect the behaviors and outcomes of network members. However, the understanding of the structure and interactions within these networks is relatively limited.</p><p><strong>Objective: </strong>This study investigates the characteristics of a large-scale secure messaging network and its association with health care professional messaging behaviors.</p><p><strong>Methods: </strong>Data on electronic health record-integrated secure messaging use from 14 inpatient and 282 outpatient practice locations within a large Midwestern health system over a 6-month period (June 1, 2023, through November 30, 2023) were collected. Social network analysis techniques were used to quantify the global (network)- and node (health care professional)-level properties of the network. Hierarchical clustering techniques were used to identify clusters of health care professionals based on network characteristics; associations between the clusters and the following messaging behaviors were assessed: message read time, message response time, total volume of messages, character length of messages sent, and character length of messages received.</p><p><strong>Results: </strong>The dataset included 31,800 health care professionals and 7,672,832 messages; the resultant messaging network consisted of 31,800 nodes and 1,228,041 edges. Network characteristics differed based on practice location and professional roles (P<.001). Specifically, pharmacists and advanced practice providers, as well as those working in inpatient settings, had the highest values for all network metrics considered. Four clusters were identified, representing differences in connectivity within the network. Statistically significant differences across clusters were identified between all considered secure messaging behaviors (P<.001). One of the clusters with 1109 nodes, consisting mostly of physicians and other inpatient health care professionals, had the highest values for all node-level metrics compared to the other clusters found. This cluster also had the quickest message read and response times and handled the largest volume of messages per day.</p><p><strong>Conclusions: </strong>Secure messaging use within a large health care system manifested as an expansive communication network where connectivity varied based on a health care professional's role and their practice setting. Furthermore, our findings highlighted a relationship between health care professionals' connectivity in the network and their daily secure messaging behaviors. These findings provide insights into the complexities of communication and coordination structures among health care providers and downstream secure messaging use. Understanding how secure messaging is used among health care professionals can offer insights into interventions aimed at streamlining communication, which may, in turn, potentially enhance clinician work behaviors and patient outcomes.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e66544"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/66544","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Communication among health care professionals is essential for effective clinical care. Asynchronous text-based clinician communication-secure messaging-is rapidly becoming the preferred mode of communication. The use of secure messaging platforms across health care institutions creates large-scale communication networks that can be used to characterize how interaction structures affect the behaviors and outcomes of network members. However, the understanding of the structure and interactions within these networks is relatively limited.
Objective: This study investigates the characteristics of a large-scale secure messaging network and its association with health care professional messaging behaviors.
Methods: Data on electronic health record-integrated secure messaging use from 14 inpatient and 282 outpatient practice locations within a large Midwestern health system over a 6-month period (June 1, 2023, through November 30, 2023) were collected. Social network analysis techniques were used to quantify the global (network)- and node (health care professional)-level properties of the network. Hierarchical clustering techniques were used to identify clusters of health care professionals based on network characteristics; associations between the clusters and the following messaging behaviors were assessed: message read time, message response time, total volume of messages, character length of messages sent, and character length of messages received.
Results: The dataset included 31,800 health care professionals and 7,672,832 messages; the resultant messaging network consisted of 31,800 nodes and 1,228,041 edges. Network characteristics differed based on practice location and professional roles (P<.001). Specifically, pharmacists and advanced practice providers, as well as those working in inpatient settings, had the highest values for all network metrics considered. Four clusters were identified, representing differences in connectivity within the network. Statistically significant differences across clusters were identified between all considered secure messaging behaviors (P<.001). One of the clusters with 1109 nodes, consisting mostly of physicians and other inpatient health care professionals, had the highest values for all node-level metrics compared to the other clusters found. This cluster also had the quickest message read and response times and handled the largest volume of messages per day.
Conclusions: Secure messaging use within a large health care system manifested as an expansive communication network where connectivity varied based on a health care professional's role and their practice setting. Furthermore, our findings highlighted a relationship between health care professionals' connectivity in the network and their daily secure messaging behaviors. These findings provide insights into the complexities of communication and coordination structures among health care providers and downstream secure messaging use. Understanding how secure messaging is used among health care professionals can offer insights into interventions aimed at streamlining communication, which may, in turn, potentially enhance clinician work behaviors and patient outcomes.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.