Brain Behavior and Evolution最新文献

筛选
英文 中文
The Cocoon of the Developing Emerald Jewel Wasp (Ampulex compressa) Resists Cannibalistic Predation of the Zombified Host. 发育中的翡翠宝石蜂(Ampulex compressa)的茧能抵御僵尸化宿主的食人捕食。
IF 2.1 4区 心理学
Brain Behavior and Evolution Pub Date : 2025-01-01 Epub Date: 2024-10-04 DOI: 10.1159/000540971
Kenneth C Catania
{"title":"The Cocoon of the Developing Emerald Jewel Wasp (Ampulex compressa) Resists Cannibalistic Predation of the Zombified Host.","authors":"Kenneth C Catania","doi":"10.1159/000540971","DOIUrl":"10.1159/000540971","url":null,"abstract":"<p><strong>Introduction: </strong>To reproduce, the parasitoid emerald jewel wasp (Ampulex compressa) envenomates an American cockroach (Periplaneta americana) and barricades it in a hole with an egg on the host's leg. The larval wasp feeds externally before entering the host and consuming internal organs before forming a cocoon inside the host carcass.</p><p><strong>Methods: </strong>The vulnerability of jewel wasp larvae to predation by juvenile cockroaches was investigated, and data were recorded with time-lapse videography.</p><p><strong>Results: </strong>Cockroaches were found to be predators of parasitized hosts. When parasitized cockroaches were exposed to hungry cockroaches on days 0-8 of development, the developing larva was killed. Eggs were dislodged or consumed, larvae on the leg were eaten, and larvae inside the host were eaten along with the host. On day 9, 80% of the wasp larvae were killed and eaten along with the host. Conversely, on day 10, 90% of the larvae survived. On developmental day 11 or later, the wasp larva always survived, although the host carcass was consumed. Survival depended entirely on whether the cocoon had been completed.</p><p><strong>Conclusion: </strong>The results highlight the vulnerability of larvae to predation and suggest the cocoon defends from insect mandibles. This may explain the unusual feeding behavior of the jewel wasp larvae, which eat the host with remarkable speed, tapping into the host respiratory system in the process, and consuming vital organs early, in contrast to many other parasitoids. Results are discussed in relation to larval wasp behavior, evolution, and development, and potential predators are considered.</p><p><strong>Introduction: </strong>To reproduce, the parasitoid emerald jewel wasp (Ampulex compressa) envenomates an American cockroach (Periplaneta americana) and barricades it in a hole with an egg on the host's leg. The larval wasp feeds externally before entering the host and consuming internal organs before forming a cocoon inside the host carcass.</p><p><strong>Methods: </strong>The vulnerability of jewel wasp larvae to predation by juvenile cockroaches was investigated, and data were recorded with time-lapse videography.</p><p><strong>Results: </strong>Cockroaches were found to be predators of parasitized hosts. When parasitized cockroaches were exposed to hungry cockroaches on days 0-8 of development, the developing larva was killed. Eggs were dislodged or consumed, larvae on the leg were eaten, and larvae inside the host were eaten along with the host. On day 9, 80% of the wasp larvae were killed and eaten along with the host. Conversely, on day 10, 90% of the larvae survived. On developmental day 11 or later, the wasp larva always survived, although the host carcass was consumed. Survival depended entirely on whether the cocoon had been completed.</p><p><strong>Conclusion: </strong>The results highlight the vulnerability of larvae to predation and suggest the cocoon d","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"1-10"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878412/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Behavioral and Neurobiological Response to Sound Stress in Salmon. 鲑鱼对声音压力的行为和神经生物学反应。
IF 2.1 4区 心理学
Brain Behavior and Evolution Pub Date : 2025-01-01 Epub Date: 2024-05-16 DOI: 10.1159/000539329
Frode Oppedal, Luke T Barrett, Thomas W K Fraser, Tone Vågseth, Guosong Zhang, Oliver G Andersen, Lea Jacson, Marie-Aida Dieng, Marco A Vindas
{"title":"The Behavioral and Neurobiological Response to Sound Stress in Salmon.","authors":"Frode Oppedal, Luke T Barrett, Thomas W K Fraser, Tone Vågseth, Guosong Zhang, Oliver G Andersen, Lea Jacson, Marie-Aida Dieng, Marco A Vindas","doi":"10.1159/000539329","DOIUrl":"10.1159/000539329","url":null,"abstract":"<p><strong>Introduction: </strong>Noise associated with human activities in aquatic environments can affect the physiology and behavior of aquatic species which may have consequences at the population and ecosystem levels. Low-frequency sound is particularly stressful for fish since it is an important factor in predator-prey interactions. Even though behavioral and physiological studies have been conducted to assess the effects of sound on fish species, neurobiological studies are still lacking.</p><p><strong>Methods: </strong>In this study, we exposed farmed salmon to low-frequency sound for 5 min a day for 30 trials and conducted behavioral observations and tissue sampling before sound exposure (timepoint zero; T0) and after 1 (T1), 10 (T2), 20 (T3), and 30 (T4) exposures, to assess markers of stress. These included plasma cortisol, neuronal activity, monoaminergic signaling, and gene expression in 4 areas of the forebrain.</p><p><strong>Results: </strong>We found that sound exposure induced an activation of the stress response by eliciting an initial startle behavioral response, together with increased plasma cortisol levels and a decrease in neuronal activity in the hypothalamic tubercular nuclei (TN). At T3 and T4 salmon showed a degree of habituation in their behavioral and cortisol response. However, at T4, salmon showed signs of chronic stress with increased serotonergic activity levels in the dorsolateral and dorsomedial pallium, the preoptic area, and the TN, as well as an inhibition of growth and reproduction transcripts in the TN.</p><p><strong>Conclusions: </strong>Together, our results suggest that prolonged exposure to sound results in chronic stress that leads to neurological changes which suggest a reduction of life fitness traits.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"11-28"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Evolutionary Loss of Parental Care in Stickleback Is Associated with Differences in the Activity, but Not the Number, of Neuropeptidergic Neurons in the Preoptic Area. 棘鱼在进化过程中失去亲代照顾与视前区神经肽能神经元的活动差异有关,但与数量无关。
IF 1.8 4区 心理学
Brain Behavior and Evolution Pub Date : 2025-01-01 Epub Date: 2025-03-28 DOI: 10.1159/000545350
Meghan F Maciejewski, Eva K Fischer, Alison M Bell, Meghan Maciejewski
{"title":"An Evolutionary Loss of Parental Care in Stickleback Is Associated with Differences in the Activity, but Not the Number, of Neuropeptidergic Neurons in the Preoptic Area.","authors":"Meghan F Maciejewski, Eva K Fischer, Alison M Bell, Meghan Maciejewski","doi":"10.1159/000545350","DOIUrl":"10.1159/000545350","url":null,"abstract":"<p><strong>Introduction: </strong>A central question about the evolution of social behavior is how extensive diversity can arise when behaviors depend on shared neural, molecular, and hormonal mechanisms. Comparing close relatives can offer insights into which components of shared mechanisms are most evolvable.</p><p><strong>Methods: </strong>We discriminate between two nonexclusive hypotheses by which conserved neural mechanisms might evolve to generate differences in social behavior: changes in the number or activity of neurons. We test these hypotheses in two recently diverged ecotypes of threespine stickleback (Gasterosteus aculeatus); the common ecotype provides parental care, while the white ecotype does not. We used double-label fluorescent immunohistochemistry with pS6, a marker of transcriptionally active neurons, to quantify the number and activity of two preoptic neuropeptidergic cell types that affect parental care across vertebrates: galanin (Gal) and oxytocin (OXT).</p><p><strong>Results: </strong>Ecotypes did not differ in the overall activity of the preoptic area or the number of Gal and OXT neurons but did differ in the activity of Gal and OXT neurons. The activity of these neurons changed across reproductive stages in the common but not the white ecotype. Activity peaked after mating in commons when males began to care for their offspring, suggesting that changes in the activity of these specific preoptic neurons are required to transition from courtship to parenting.</p><p><strong>Conclusion: </strong>Overall, our study suggests that rapid behavioral evolution occurred via changes in the activity but not the number of specific preoptic neuropeptidergic neurons.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"171-182"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12353946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143756233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Endocranial Cast of Khirtharia (Artiodactyla, Raoellidae) Provides New Insights into the Earliest Evolution of the Cetacean Brain. Khirtharia(偶蹄目,Raoellidae)的颅内模型为鲸类动物大脑的早期进化提供了新的见解。
IF 2.1 4区 心理学
Brain Behavior and Evolution Pub Date : 2025-01-01 Epub Date: 2024-12-10 DOI: 10.1159/000542574
Mohd Waqas, Thierry Smith, Rajendra Rana, Maeva J Orliac
{"title":"The Endocranial Cast of Khirtharia (Artiodactyla, Raoellidae) Provides New Insights into the Earliest Evolution of the Cetacean Brain.","authors":"Mohd Waqas, Thierry Smith, Rajendra Rana, Maeva J Orliac","doi":"10.1159/000542574","DOIUrl":"10.1159/000542574","url":null,"abstract":"<p><strong>Introduction: </strong>Raoellidae are small artiodactyls retrieved from the middle Eocene of Asia (ca. -47 Ma) and closely related to stem Cetacea. Morphological observations of their endocranial structures allow for outlining some of the early steps of the evolutionary history of the cetacean brain. The external features of the brain and associated sinuses of Raoellidae are so far only documented by the virtual reconstruction of the endocast based on specimens of the species Indohyus indirae. These specimens are however too deformed to fully access the external morphology, surface area, and volume measurements of the brain.</p><p><strong>Methods: </strong>We bring here new elements to the picture of the raoellid brain by an investigation of the internal structures of an exceptionally well-preserved cranium collected from the Kalakot area (Jammu and Kashmir, India) referred to the species Khirtharia inflata. Micro-CT scan investigation and virtual reconstruction of the endocast and associated sinuses of this specimen provide crucial additional data about the morphological diversity within Raoellidae as well as reliable linear, surfaces, and volumes measurements, allowing for quantitative studies.</p><p><strong>Results: </strong>We show that, like I. indirae, the brain of K. inflata exhibits a mosaic of features observed in earliest artiodactyls: a small neocortex with simple folding pattern, widely exposed midbrain, and relatively long cerebellum. But, like Indohyus, the brain of Khirtharia shows unique derived characters also observed in stem cetaceans: narrow elongated olfactory bulbs and peduncles, posterior location of the braincase in the cranium, and complex network of blood vessels around the cerebellum. The volume of the brain relative to body mass of K. inflata is markedly small when compared to other early artiodactyls.</p><p><strong>Conclusion: </strong>We show here that cetaceans that nowadays have the second biggest brain after humans derive from a group of animals that had a lower-than-average expected brain size. This is probably a side effect of the adaptation to aquatic life. Conversely, this very small brain size relative to body mass might be another line of evidence supporting the aquatic habits in raoellids.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"80-92"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12129423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pose Analysis in Free-Swimming Adult Zebrafish, Danio rerio: "Fishy" Origins of Movement Design. 自由游动的成年斑马鱼的姿势分析,Danio rerio:“鱼”的运动设计起源。
IF 2.1 4区 心理学
Brain Behavior and Evolution Pub Date : 2025-01-01 Epub Date: 2024-12-16 DOI: 10.1159/000543081
Jagmeet S Kanwal, Bhavjeet S Sanghera, Riya Dabbi, Eric Glasgow
{"title":"Pose Analysis in Free-Swimming Adult Zebrafish, Danio rerio: \"Fishy\" Origins of Movement Design.","authors":"Jagmeet S Kanwal, Bhavjeet S Sanghera, Riya Dabbi, Eric Glasgow","doi":"10.1159/000543081","DOIUrl":"10.1159/000543081","url":null,"abstract":"<p><strong>Introduction: </strong>Movement requires maneuvers that generate thrust to either make turns or move the body forward in physical space. The computational space for perpetually controlling the relative position of every point on the body surface can be vast. We hypothesize the evolution of efficient design for movement that minimizes active (neural) control by leveraging the passive (reactive) forces between the body and the surrounding medium at play. To test our hypothesis, we investigate the presence of stereotypical postures during free-swimming in adult zebrafish, Danio rerio.</p><p><strong>Methods: </strong>We perform markerless tracking using DeepLabCut (DLC), a deep learning pose-estimation toolkit, to track geometric relationships between body parts. We identify putative clusters of postural configurations from twelve freely behaving zebrafish, using unsupervised multivariate time-series analysis (B-SOiD machine-learning software) and of distances and angles between body segments extracted from DLC data.</p><p><strong>Results: </strong>When applied to single individuals, DLC-extracted data reveal a best-fit for 36-50 clusters in contrast to 86 clusters for data pooled from all 12 animals. The centroids of each cluster obtained over 14,000 sequential frames represent an a priori classification into relatively stable \"target body postures.\" We use multidimensional scaling of mean parameter values for each cluster to map cluster centroids within two dimensions of postural space. From a posteriori visual analysis, we condense neighboring postural variants into 15 superclusters or core body configurations. We develop a nomenclature specifying the anteroposterior level/s (upper, mid, and lower) and degree of bending.</p><p><strong>Conclusion: </strong>Our results suggest that constraining bends to mainly three anteroposterior levels in fish paved the way for the evolution of a neck, fore- and hind limb design for maneuverability in land vertebrates.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"93-111"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142840523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the Neural Basis of Behavioral Isolation through the Lens of Audition in Anurans. 从无尾目动物的听觉角度揭示行为隔离的神经基础
IF 2.1 4区 心理学
Brain Behavior and Evolution Pub Date : 2025-01-01 Epub Date: 2024-12-19 DOI: 10.1159/000542575
Carlie B Anderson
{"title":"Unraveling the Neural Basis of Behavioral Isolation through the Lens of Audition in Anurans.","authors":"Carlie B Anderson","doi":"10.1159/000542575","DOIUrl":"10.1159/000542575","url":null,"abstract":"<p><strong>Background: </strong>The origin and maintenance of species is a unifying theme in evolutionary biology. Mate choice and selection on sexual signals have emerged as powerful drivers of reproductive isolation - the key pillar of the biological species concept. The mechanistic underpinnings of isolating behaviors lie in the circuit- and cellular-level properties of the brain and remain relatively understudied.</p><p><strong>Summary: </strong>Here, I argue that temporal auditory selectivity in anuran amphibians offers a window into the proximate mechanisms of reproductive isolation. First, I discuss anuran behaviors as a longstanding neuroethological model with which to examine behavioral reproductive isolation and its neural correlates. Next, I review how modern neurobiological techniques are revealing the proximate mechanisms of the evolution of divergent mate preferences in anurans, highlighting cellular-level neural shifts in temporal coding. Finally, I discuss future research directions to reveal the neural mechanisms through which behavioral isolation is generated and maintained in anuran model systems.</p><p><strong>Key messages: </strong>Anurans offer a powerful model for addressing questions about how neural barriers to gene flow arise across biological scales and how changes in the brain contribute to speciation. Modern evolutionary neurobiology will benefit from applying new tools to this longstanding neuroethological model clade.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"123-138"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Population Density Drives Concerted Increase in Whole Brain Volume in a Wrasse Species Coris batuensis. 种群密度驱动濑鱼全脑容量的一致增加。
IF 2.1 4区 心理学
Brain Behavior and Evolution Pub Date : 2025-01-01 Epub Date: 2025-02-05 DOI: 10.1159/000543220
Yasmin Emery, Letizia Pessina, Redouan Bshary
{"title":"Population Density Drives Concerted Increase in Whole Brain Volume in a Wrasse Species Coris batuensis.","authors":"Yasmin Emery, Letizia Pessina, Redouan Bshary","doi":"10.1159/000543220","DOIUrl":"10.1159/000543220","url":null,"abstract":"<p><strong>Introduction: </strong>The factors shaping vertebrate brain evolution and cognition are broadly categorized as being either social or environmental. Yet, their relative importance is debated, partly due to the limitations associated with standard interspecific evolutionary comparisons. Here, we adopt a complementary strategy leveraging within-population variation in fish brain size to ask how variation in social and environmental factors correlates with individual brain size.</p><p><strong>Methods: </strong>We investigated how overall brain size and brain part sizes varied between demes of the same population in the coral reef-associated batu coris Coris batuensis. This species is ideal for our approach because its local population densities are dissociated from both interspecific densities and habitat complexity.</p><p><strong>Results: </strong>We found that individuals from demes with higher population densities possess larger overall brain volumes than those from lower population density environments, caused by an enlargement of all five main brain regions. Brain anatomical measures show no correlation with interspecific density or habitat complexity.</p><p><strong>Conclusion: </strong>Our results suggest that variation in intraspecific social challenges is selected on individual batu coris brain size, either through phenotypic plasticity, differential survival, or habitat choice. These results conform with a broader version of the social brain hypothesis, emphasizing the importance of the entire brain over specific regions like the neocortex in mammals or the telencephalon in fishes.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"112-122"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143190314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibitory Systems in Brain Evolution: Pathways of Vulnerability in Neurodevelopmental Disorders. 大脑进化过程中的抑制系统:神经发育障碍的脆弱性途径。
IF 2.1 4区 心理学
Brain Behavior and Evolution Pub Date : 2025-01-01 Epub Date: 2024-08-13 DOI: 10.1159/000540865
Kari L Hanson, Demi M Z Greiner, Cynthia M Schumann, Katerina Semendeferi
{"title":"Inhibitory Systems in Brain Evolution: Pathways of Vulnerability in Neurodevelopmental Disorders.","authors":"Kari L Hanson, Demi M Z Greiner, Cynthia M Schumann, Katerina Semendeferi","doi":"10.1159/000540865","DOIUrl":"10.1159/000540865","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;The evolution of the primate brain has been characterized by the reorganization of key structures and circuits underlying derived specializations in sensory systems, as well as social behavior and cognition. Among these, expansion and elaboration of the prefrontal cortex has been accompanied by alterations to the connectivity and organization of subcortical structures, including the striatum and amygdala, underlying advanced aspects of executive function, inhibitory behavioral control, and socioemotional cognition seen in our lineages. At the cellular level, the primate brain has further seen an increase in the diversity and number of inhibitory GABAergic interneurons. A prevailing hypothesis holds that disruptions in the balance of excitatory to inhibitory activity in the brain underlies the pathophysiology of many neurodevelopmental and psychiatric disorders.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Summary: &lt;/strong&gt;This review highlights the evolution of inhibitory brain systems and circuits and suggests that recent evolutionary modifications to GABAergic circuitry may provide the substrate for vulnerability to aberrant neurodevelopment. We further discuss how modifications to primate and human social organization and life history may shape brain development in ways that contribute to neurodivergence and the origins of neurodevelopmental disorders.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Key messages: &lt;/strong&gt;Many brain systems have seen functional reorganization in the mammalian, primate, and human brain. Alterations to inhibitory circuitry in frontostriatal and frontoamygdalar systems support changes in social behavior and cognition. Increased complexity of inhibitory systems may underlie vulnerabilities to neurodevelopmental and psychiatric disorders, including autism and schizophrenia. Changes observed in Williams syndrome may further elucidate the mechanisms by which alterations in inhibitory systems lead to changes in behavior and cognition. Developmental processes, including altered neuroimmune function and age-related vulnerability of inhibitory cells and synapses, may lead to worsening symptomatology in neurodevelopmental and psychiatric disorders.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;The evolution of the primate brain has been characterized by the reorganization of key structures and circuits underlying derived specializations in sensory systems, as well as social behavior and cognition. Among these, expansion and elaboration of the prefrontal cortex has been accompanied by alterations to the connectivity and organization of subcortical structures, including the striatum and amygdala, underlying advanced aspects of executive function, inhibitory behavioral control, and socioemotional cognition seen in our lineages. At the cellular level, the primate brain has further seen an increase in the diversity and number of inhibitory GABAergic interneurons. A prevailing hypothesis holds that disruptions in the balance of excitatory to inhibitory activity in the b","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"29-48"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141977387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain Activation Patterns and Dopaminergic Neuron Activity in Response to Conspecific Advertisement Calls in Reproductive versus Non-Reproductive Male Plainfin Midshipman Fish (Porichthys notatus). 生殖与非生殖雄性平鳍海军候补鱼对同种广告呼叫的脑激活模式和多巴胺能神经元活动。
IF 1.8 4区 心理学
Brain Behavior and Evolution Pub Date : 2025-01-01 Epub Date: 2025-01-30 DOI: 10.1159/000543759
Brooke J Vetter, Jonathan T Perelmuter, Nicholas R Lozier, Joseph A Sisneros, Paul M Forlano, Brooke Vetter
{"title":"Brain Activation Patterns and Dopaminergic Neuron Activity in Response to Conspecific Advertisement Calls in Reproductive versus Non-Reproductive Male Plainfin Midshipman Fish (<italic>Porichthys notatus</italic>).","authors":"Brooke J Vetter, Jonathan T Perelmuter, Nicholas R Lozier, Joseph A Sisneros, Paul M Forlano, Brooke Vetter","doi":"10.1159/000543759","DOIUrl":"10.1159/000543759","url":null,"abstract":"<p><strong>Introduction: </strong>The plainfin midshipman fish (Porichthys notatus) relies on the production and reception of social acoustic signals for reproductive success. During spawning, male midshipman fish produce long duration advertisement calls to attract females, which use their auditory sense to locate and access calling males. While seasonal changes based on reproductive state in inner-ear auditory sensitivity and frequency encoding in midshipman are well documented, little is known about reproductive-state-dependent changes in central auditory sensitivity and auditory neural responsiveness to conspecific advertisement calls. Previous research indicates that forebrain dopaminergic neurons are preferentially active in response to conspecific advertisement calls and during female auditory-driven behavior in the breeding season. These dopamine neurons project to both the inner ear and central auditory nuclei and contribute to regulation of inner-ear auditory sensitivity based on reproductive state. The present study tested the hypothesis that exposure to the male advertisement call would elicit differential activation in auditory brain nuclei and in the forebrain auditory-projecting dopaminergic nucleus in reproductive versus non-reproductive male midshipman.</p><p><strong>Methods: </strong>Fish were collected during the spring reproductive and winter non-reproductive months and were exposed to a playback of the advertisement call or ambient noise (control). Immunohistochemistry identified activated neurons (pS6-ir; proxy for neural activation) in midbrain and forebrain auditory and dopaminergic nuclei.</p><p><strong>Results and conclusions: </strong>Our results revealed that in key auditory and dopaminergic areas, the greatest activation (most pS6-ir cells) occurred in reproductive males exposed to the advertisement call.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"156-170"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutionary Conservation of the Gcm/Glide Cascade: Of Glia and Beyond. Gcm/Glide级联的进化保护:神经胶质细胞及其他细胞。
IF 2.1 4区 心理学
Brain Behavior and Evolution Pub Date : 2025-01-01 Epub Date: 2024-11-25 DOI: 10.1159/000542753
Sara Monticelli, Angela Giangrande
{"title":"Evolutionary Conservation of the Gcm/Glide Cascade: Of Glia and Beyond.","authors":"Sara Monticelli, Angela Giangrande","doi":"10.1159/000542753","DOIUrl":"10.1159/000542753","url":null,"abstract":"<p><strong>Background: </strong>Glia represent a major cell population of the nervous system, and they take part in virtually any process sustaining the development, the functioning, and the pathology of the nervous system. Glial cells diversified significantly during evolution and distinct signals have been adopted to initiate glial development in mammals as compared to flies. In the invertebrate model Drosophila melanogaster, the transcription factor Gcm is necessary and sufficient to generate glial cells. Although Gcm orthologs have been found in protostomes and deuterostomes, they do not act in glial fate commitment as in flies, calling for further investigations of the evolutionarily conserved role of Gcm.</p><p><strong>Summary: </strong>Here, we review the impact of the fly Gcm transcription factor in the differentiation of phagocytic competent cells inside and outside the nervous system, glia, and macrophages, respectively. Then, we discuss the evolutionary conservation of Gcm and the neural/nonneural functions of Gcm orthologs. Finally, we present a recent work from Pavlidaki et al. [Cell Rep. 2022;41(3):111506] showing that the Gcm cascade is conserved from fly macrophages to mammalian microglia to counteract acute and chronic inflammation.</p><p><strong>Key messages: </strong>Gcm has an ancestral role in immunity, and its anti-inflammatory effect is evolutionarily conserved. This opens new avenues to assess Gcm function in other species/animal models, its potential involvement in inflammation-related processes, such as regeneration, and to expand the investigation on glia evolution.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"58-66"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信