{"title":"Evolution of Developmental Timing as a Driving Force of Brain Diversity","authors":"Rodrigo Suárez, A. Halley","doi":"10.1159/000524334","DOIUrl":"https://doi.org/10.1159/000524334","url":null,"abstract":"The question of how complex traits originate and diversify has marveled naturalists for millennia. From the notion of development as a series of transformations beyond 'pre-formed' growth by Aristotle, to von Baer's recognition of phylogenetic differentiation that set the foundations of modern evo-devo thinking, a central theme has been the nature of biological change (and conservation) across temporal scales. Since the last universal common ancestors, recurrent series of ontogenies have negotiated conservation and change, thus generating the phylogenetic tree against the regularities of planetary rhythms (e.g., tides, days, seasons) as well as organismic dynamics (e.g., embryogenesis, metabolism, behavior). Accordingly, differences in the relative timing of developmental processes (i.e., heterochronies) have long been considered as a major source of evolutionary diversity. To further reflect upon the mechanisms by which changes in developmental timing have shaped brain evolution, the 32nd Annual Karger Workshop in Evolutionary Neuroscience included a diverse panel of speakers to address the topic of Heterochrony in Comparative Neurodevelopment. This Special Edition of Brain Behavior & Evolution is a collection of articles contributed by these speakers around this central theme. The contributed papers are quite diverse in their focus, their methods, and the insights they provide. However, a common thread in these reflections is the understanding of organisms as dynamic systems, embedded within an ecological context, which arise via an epigenetic process of developmental transformations, and consist of coherent yet dissociable modules. Evolution takes place by a differential tinkering of these developmental processes, generating innovations within the constraints of an organism's viability. Our understanding of how development affects evolution has moved beyond a simplistic dichotomy of genotype-phenotype to incorporate the many contexts in which variation can result in the conservation of new contingencies. In our view, this collection of articles builds upon these notions to highlight some of the mechanisms by which heterochrony, understood as a consequence of the evolution of developmental processes rather than a developmental process in and of itself, has contributed to the generation of diversity in complex brain features.","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":"97 1","pages":"3 - 7"},"PeriodicalIF":1.7,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47191510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relative Brain Volume of Carnivorans Has Evolved in Correlation with Environmental and Dietary Variables Differentially among Clades","authors":"Leigha M. Lynch, K. Allen","doi":"10.1159/000523787","DOIUrl":"https://doi.org/10.1159/000523787","url":null,"abstract":"Carnivorans possess relatively large brains compared to most other mammalian clades. Factors like environmental complexity (Cognitive Buffer Hypothesis) and diet quality (Expensive-Tissue Hypothesis) have been proposed as mechanisms for encephalization in other large-brained clades. We examine whether the Cognitive Buffer and Expensive-Tissue Hypotheses account for brain size variation within Carnivora. Under these hypotheses, we predict a positive correlation between brain size and environmental complexity or protein consumption. Relative endocranial volume (phylogenetic generalized least-squares residual from species’ mean body mass) and 9 environmental and dietary variables were collected from the literature for 148 species of terrestrial and marine carnivorans. We found that the correlation between relative brain volume and environment and diet differed among clades, a trend consistent with other larger brained vertebrates (i.e., Primates, Aves). Mustelidae and Procyonidae demonstrate larger brains in species with higher-quality diets, consistent with the Expensive-Tissue Hypothesis, while in Herpestidae, correlations between relative brain size and environment are consistent with the Cognitive Buffer Hypothesis. Our results indicate that carnivorans may have evolved relatively larger brains under similar selective pressures as primates despite the considerable differences in life history and behavior between these two clades.","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":"97 1","pages":"284 - 297"},"PeriodicalIF":1.7,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41658904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Front & Back Matter","authors":"","doi":"10.1159/000524136","DOIUrl":"https://doi.org/10.1159/000524136","url":null,"abstract":"","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49119187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Treven J. Winters, S. Martin, Holden Anderson, Nichole D. Procter, D. Lutterschmidt
{"title":"Role of Melatonin in Temperature-Induced Activation of the Neuroendocrine Reproductive Axis in Garter Snakes","authors":"Treven J. Winters, S. Martin, Holden Anderson, Nichole D. Procter, D. Lutterschmidt","doi":"10.1159/000523788","DOIUrl":"https://doi.org/10.1159/000523788","url":null,"abstract":"An animal’s ability to respond optimally to changing environmental conditions is paramount to successfully reproducing and thus maximizing fitness. Studies on photoperiod-induced changes in neural thyroid hormone metabolism have conclusively linked environmental cues to the neuroendocrine reproductive axis of birds and mammals. Whether this conserved mechanism also transduces changes in environmental temperature, however, has not been fully addressed. We investigated whether the hormone melatonin mediates the effects of low-temperature dormancy on thyroid hormone metabolism within the hypothalamus of red-sided garter snakes (Thamnophis sirtalis parietalis). To address this question, we used immunohistochemistry to assess changes in thyroid-stimulating hormone (TSH) in the infundibulum of the pituitary and deiodinase 3 (Dio3) and gonadotropin-releasing hormone (GnRH) in the hypothalamus. We also asked if changes in TSH, Dio3, and/or GnRH immunoreactivity are associated with changes in male courtship behavior. In contrast to our predictions, 6 weeks of dormancy at 4°C significantly decreased the number of TSH-labeled cells in the infundibulum. It is possible that the observed decrease in TSH is related to the release of snakes from temperature refractoriness, but this idea needs further testing. Treatment of snakes with the melatonin precursor 5-hydroxytryptophan during dormancy at 4°C both reversed the temperature-induced change in TSH immunoreactivity and disrupted the temporal pattern of male courtship behavior. These results suggest that TSH cells within the infundibulum are both modulated by temperature and sensitive to changes in melatonin. As predicted, male snakes hibernated at an elevated temperature of 12°C for 6 weeks and treated with vehicle showed no change in TSH-, Dio3-, or GnRH-immunoreactive cell number. Treatment of snakes with the melatonin receptor antagonist luzindole was not sufficient in rescuing the effects of dormancy at 12°C on TSH immunoreactivity or courtship behavior. However, luzindole-treated snakes showed a significant increase in GnRH-immunoreactive cell number, suggesting that melatonin exerts an inhibitory effect on GnRH in garter snakes. In summary, our results provide critical insights into the mechanisms that mediate the effects of temperature on reproductive physiology and behavior.","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":"97 1","pages":"167 - 183"},"PeriodicalIF":1.7,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45267620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The 42nd Annual Meeting of the J.B. Johnston Club for Evolutionary Neuroscience and the 34th Annual Karger Workshop in Evolutionary Neuroscience.","authors":"","doi":"10.1159/000526691","DOIUrl":"https://doi.org/10.1159/000526691","url":null,"abstract":"<p><p>The 2022 meetings of the J.B. Johnston Club for Evolutionary Neuroscience and Karger Workshop in Evolutionary Neuroscience will be held immediately before the annual meeting of the Society for Neuroscience on Thursday, November 10 (the Karger Workshop), and Friday, November 11 (the regular JBJC meeting). Both meetings will take place at the Horton Grand Hotel, San Diego CA, USA. This year's Karger Workshop in Evolutionary Neuroscience, made possible by the continuing support of Karger Publishers, is organized by Daphne Soares with assistance by Grace Capshaw. It is titled \"Exaptation, maladaptation and evolution of nervous systems\". The Workshop will examine the concept of exaptation and maladaptation in a wide range of animals, from invertebrates to primates and how this effects our understanding of the nervous system and the forces which have shaped it. On the following day, the program for the annual JBJC meeting will consist of 18 talks submitted by JBJC members selected by the JBJC Program Committee (Alice Powers, Andrew Iwanuik, Darcy B. Kelley) plus a presentation by this year's invited Karger Speaker, Dr. Bernard Crespi. Additional information and the final schedule of talks will be mailed to JBJC members before the meeting and posted on the JBJC web site (www.jbjclub.org).</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":"97 6","pages":"361-368"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10341576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current Status of the Hypothesis of a Claustro-Insular Homolog in Sauropsids.","authors":"Luis Puelles","doi":"10.1159/000520742","DOIUrl":"https://doi.org/10.1159/000520742","url":null,"abstract":"<p><p>The author previously worked extensively on the broad problem of the evolution of the vertebrate pallium. He proposed various Bauplan models covering at least gnathostomes, based in the definition of a set of pallial sectors with topologically invariant positional relationships and distinct molecular profiles. Out of one of these models, presented as the \"updated tetrapartite pallium model,\" a modified definition of the earlier lateral pallium sector (LPall) concept emerged, characterizing it in mammals as an unitary claustro-insular transitional (mesocortical) complex intercalated between the neocortex or dorsal pallium (DPall) above and olfactory cortex or ventral pallium (VPall) underneath. A distinctive molecular marker of the early-born deep claustral component of the LPall was found to be the transcription factor Nr4a2, which is not expressed significantly in the overlying insular cortex or in adjoining cortical territories. Given that earlier comparative studies had identified molecularly and topologically comparable VPall, LPall, and DPall sectors in the avian pallium, an avian Nr4a2 probe was applied, aiming to identify the reportedly absent avian claustro-insular complex. An early-born superficial subpopulation of the avian LPall that expresses this marker selectively through development was indeed found. This was proposed to be a claustrum homolog, whereas the remaining Nr4a2-negative avian LPall cells were assumed to represent a possible insular homolog. This last notion was subsequently supported by comparable selective expression of the mouse insular marker Cyp26b, also found restricted to the avian LPall. Some published data suggested that similar molecular properties and structure apply at the reptilian LPall. This analysis was reviewed in Puelles et al. [The pallium in reptiles and birds in the light of the updated tetrapartite pallium model. 2017]. Four years on, the present commentary discusses some international publications accrued in the interval that touch on the claustro-insular homology hypothesis. Some of them are opposed to the hypothesis whereas others corroborate or support it. This raises a number of secondary issues of general interest.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":"96 4-6","pages":"212-241"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39603367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eileanor P LaRocco, Glenn A Proudfoot, Megan D Gall
{"title":"Effects of Frequency on the Directional Auditory Sensitivity of Northern Saw-Whet Owls (Aegolius acadicus).","authors":"Eileanor P LaRocco, Glenn A Proudfoot, Megan D Gall","doi":"10.1159/000519893","DOIUrl":"https://doi.org/10.1159/000519893","url":null,"abstract":"<p><p>Many animals use sound as a medium for detecting or locating potential prey items or predation threats. Northern saw-whet owls (Aegolius acadicus) are particularly interesting in this regard, as they primarily rely on sound for hunting in darkness, but are also subject to predation pressure from larger raptors. We hypothesized that these opposing tasks should favor sensitivity to low-frequency sounds arriving from many locations (potential predators) and high-frequency sounds below the animal (ground-dwelling prey items). Furthermore, based on the morphology of the saw-whet owl skull and the head-related transfer functions of related species, we expected that the magnitude of changes in sensitivity across spatial locations would be greater for higher frequencies than low frequencies (i.e., more \"directional\" at high frequencies). We used auditory-evoked potentials to investigate the frequency-specific directional sensitivity of Northern saw-whet owls to acoustic signals. We found some support for our hypothesis, with smaller-magnitude changes in sensitivity across spatial locations at lower frequencies and larger-magnitude changes at higher frequencies. In general, owls were most sensitive to sounds originating in front of and above their heads, but at 8 kHz there was also an area of high sensitivity below the animals. Our results suggest that the directional hearing of saw-whet owls should allow for both predator and prey detection.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"129-139"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39679174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Multiple Contexts of Brain Scaling: Phenotypic Integration in Brain and Behavioral Evolution.","authors":"Barbara L Finlay","doi":"10.1159/000521984","DOIUrl":"https://doi.org/10.1159/000521984","url":null,"abstract":"<p><p>Understanding the adaptive functions of increasing brain size have occupied scientists for decades. Here, taking the general perspective of the Extended Evolutionary Synthesis, the question of how brains change in size will be considered in two developmental frameworks. The first framework will consider the particular developmental mechanisms that control and generate brain mass, concentrating on neurogenesis in a comparative vertebrate context. The consequences of limited adult neurogenesis in mammals, and the dominating role of duration of neurogenesis for mammalian evolution will be discussed for the particular case of the teleost versus mammalian retina, and for paths of brain evolution more generally. The second framework examines brain mass in terms of life history, particularly the features of life history that correlate highly, if imperfectly, with brain mass, including duration of development to adolescence, duration of parental care, body and range size, and longevity. This covariation will be examined in light of current work on genetic causes and consequences of covariation in craniofacial bone groupings. The eventual development of a multivariate structure for understanding brain evolution which specifically integrates formerly separate layers of analysis is the ultimate goal.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"83-95"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39823739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ecology, Cognition, and the Hippocampus: A Tale of Two Frogs.","authors":"Sabrina S Burmeister","doi":"10.1159/000522108","DOIUrl":"https://doi.org/10.1159/000522108","url":null,"abstract":"<p><p>The underlying hypothesis that motivates research into the relationship between ecology, cognition, and the hippocampus is that selection to solve problems in nature shapes cognition through changes in the hippocampus. This hypothesis has been explored almost exclusively in mammals and birds. However, if one is interested in the principles that shape the evolution of vertebrate cognition, work in amphibians is essential. To address this gap, we have developed a research program contrasting cognitive abilities and hippocampal neurobiology in two species of frog with distinct social and spatial ecologies. We have found that the poison frog Dendrobates auratus, a diurnal species whose interactions with the physical and social environment are complex, is more adept and flexible at spatial learning and learned inhibition than the túngara frog, a nocturnal species that lacks complex interactions with the spatial and social environment. Because spatial learning and learned inhibition are closely associated with hippocampal function in other vertebrates, we used RNA sequencing to characterize molecular differences in the hippocampus of the two species. We have found that D. auratus has greater levels of expression of genes associated with neurogenesis, synaptic plasticity, and cellular activity, and lower levels of expression of genes associated with apoptosis, compared to the túngara frog. Our studies are consistent with the idea that D. auratus, with their more complex social and spatial ecology, have enhanced hippocampally dependent cognitive abilities compared to túngara frogs. Further characterization of the features of hippocampal neurobiology that confer distinctive cognitive abilities will help elucidate the neural features that are necessary for the evolution of enhanced hippocampally dependent cognition.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"211-224"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39927786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}