Brain activation patterns and dopaminergic neuron activity in response to conspecific advertisement calls in reproductive vs. non-reproductive male plainfin midshipman fish (Porichthys notatus).
Brooke J Vetter, Jonathan T Perelmuter, Nicholas R Lozier, Joseph A Sisneros, Paul M Forlano
{"title":"Brain activation patterns and dopaminergic neuron activity in response to conspecific advertisement calls in reproductive vs. non-reproductive male plainfin midshipman fish (Porichthys notatus).","authors":"Brooke J Vetter, Jonathan T Perelmuter, Nicholas R Lozier, Joseph A Sisneros, Paul M Forlano","doi":"10.1159/000543759","DOIUrl":null,"url":null,"abstract":"<p><p>The plainfin midshipman fish (Porichthys notatus) relies on the production and reception of social acoustic signals for reproductive success. During spawning, male midshipman produce long duration advertisement calls to attract females, which use their auditory sense to locate and access calling males. While seasonal changes based on reproductive state in inner-ear auditory sensitivity and frequency encoding in midshipman is well documented, little is known about reproductive-state dependent changes in central auditory sensitivity and auditory neural responsiveness to conspecific advertisement calls. Previous research indicates that forebrain dopaminergic neurons are preferentially active in response to conspecific advertisement calls and during female auditory-driven behavior in the breeding season. These dopamine neurons project to both the inner ear and central auditory nuclei and contribute to regulation of inner-ear auditory sensitivity based on reproductive state. The present study tested the hypothesis that exposure to the male advertisement call would elicit differential activation in auditory brain nuclei and in the forebrain auditory-projecting dopaminergic nucleus in reproductive vs. non-reproductive male midshipman. Fish were collected during the spring reproductive and winter non-reproductive months and were exposed to a playback of the advertisement call or ambient noise (control). Immunohistochemistry identified activated neurons (pS6-ir; proxy for neural activation) in midbrain and forebrain auditory and dopaminergic nuclei. Our results revealed that in key auditory and dopaminergic areas, the greatest activation (most pS6-ir cells) occurred in reproductive males exposed to the advertisement call.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"1-25"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Behavior and Evolution","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000543759","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The plainfin midshipman fish (Porichthys notatus) relies on the production and reception of social acoustic signals for reproductive success. During spawning, male midshipman produce long duration advertisement calls to attract females, which use their auditory sense to locate and access calling males. While seasonal changes based on reproductive state in inner-ear auditory sensitivity and frequency encoding in midshipman is well documented, little is known about reproductive-state dependent changes in central auditory sensitivity and auditory neural responsiveness to conspecific advertisement calls. Previous research indicates that forebrain dopaminergic neurons are preferentially active in response to conspecific advertisement calls and during female auditory-driven behavior in the breeding season. These dopamine neurons project to both the inner ear and central auditory nuclei and contribute to regulation of inner-ear auditory sensitivity based on reproductive state. The present study tested the hypothesis that exposure to the male advertisement call would elicit differential activation in auditory brain nuclei and in the forebrain auditory-projecting dopaminergic nucleus in reproductive vs. non-reproductive male midshipman. Fish were collected during the spring reproductive and winter non-reproductive months and were exposed to a playback of the advertisement call or ambient noise (control). Immunohistochemistry identified activated neurons (pS6-ir; proxy for neural activation) in midbrain and forebrain auditory and dopaminergic nuclei. Our results revealed that in key auditory and dopaminergic areas, the greatest activation (most pS6-ir cells) occurred in reproductive males exposed to the advertisement call.
期刊介绍:
''Brain, Behavior and Evolution'' is a journal with a loyal following, high standards, and a unique profile as the main outlet for the continuing scientific discourse on nervous system evolution. The journal publishes comparative neurobiological studies that focus on nervous system structure, function, or development in vertebrates as well as invertebrates. Approaches range from the molecular over the anatomical and physiological to the behavioral. Despite this diversity, most papers published in ''Brain, Behavior and Evolution'' include an evolutionary angle, at least in the discussion, and focus on neural mechanisms or phenomena. Some purely behavioral research may be within the journal’s scope, but the suitability of such manuscripts will be assessed on a case-by-case basis. The journal also publishes review articles that provide critical overviews of current topics in evolutionary neurobiology.