Brain activation patterns and dopaminergic neuron activity in response to conspecific advertisement calls in reproductive vs. non-reproductive male plainfin midshipman fish (Porichthys notatus).

IF 2.1 4区 心理学 Q3 BEHAVIORAL SCIENCES
Brooke J Vetter, Jonathan T Perelmuter, Nicholas R Lozier, Joseph A Sisneros, Paul M Forlano
{"title":"Brain activation patterns and dopaminergic neuron activity in response to conspecific advertisement calls in reproductive vs. non-reproductive male plainfin midshipman fish (Porichthys notatus).","authors":"Brooke J Vetter, Jonathan T Perelmuter, Nicholas R Lozier, Joseph A Sisneros, Paul M Forlano","doi":"10.1159/000543759","DOIUrl":null,"url":null,"abstract":"<p><p>The plainfin midshipman fish (Porichthys notatus) relies on the production and reception of social acoustic signals for reproductive success. During spawning, male midshipman produce long duration advertisement calls to attract females, which use their auditory sense to locate and access calling males. While seasonal changes based on reproductive state in inner-ear auditory sensitivity and frequency encoding in midshipman is well documented, little is known about reproductive-state dependent changes in central auditory sensitivity and auditory neural responsiveness to conspecific advertisement calls. Previous research indicates that forebrain dopaminergic neurons are preferentially active in response to conspecific advertisement calls and during female auditory-driven behavior in the breeding season. These dopamine neurons project to both the inner ear and central auditory nuclei and contribute to regulation of inner-ear auditory sensitivity based on reproductive state. The present study tested the hypothesis that exposure to the male advertisement call would elicit differential activation in auditory brain nuclei and in the forebrain auditory-projecting dopaminergic nucleus in reproductive vs. non-reproductive male midshipman. Fish were collected during the spring reproductive and winter non-reproductive months and were exposed to a playback of the advertisement call or ambient noise (control). Immunohistochemistry identified activated neurons (pS6-ir; proxy for neural activation) in midbrain and forebrain auditory and dopaminergic nuclei. Our results revealed that in key auditory and dopaminergic areas, the greatest activation (most pS6-ir cells) occurred in reproductive males exposed to the advertisement call.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"1-25"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Behavior and Evolution","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000543759","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The plainfin midshipman fish (Porichthys notatus) relies on the production and reception of social acoustic signals for reproductive success. During spawning, male midshipman produce long duration advertisement calls to attract females, which use their auditory sense to locate and access calling males. While seasonal changes based on reproductive state in inner-ear auditory sensitivity and frequency encoding in midshipman is well documented, little is known about reproductive-state dependent changes in central auditory sensitivity and auditory neural responsiveness to conspecific advertisement calls. Previous research indicates that forebrain dopaminergic neurons are preferentially active in response to conspecific advertisement calls and during female auditory-driven behavior in the breeding season. These dopamine neurons project to both the inner ear and central auditory nuclei and contribute to regulation of inner-ear auditory sensitivity based on reproductive state. The present study tested the hypothesis that exposure to the male advertisement call would elicit differential activation in auditory brain nuclei and in the forebrain auditory-projecting dopaminergic nucleus in reproductive vs. non-reproductive male midshipman. Fish were collected during the spring reproductive and winter non-reproductive months and were exposed to a playback of the advertisement call or ambient noise (control). Immunohistochemistry identified activated neurons (pS6-ir; proxy for neural activation) in midbrain and forebrain auditory and dopaminergic nuclei. Our results revealed that in key auditory and dopaminergic areas, the greatest activation (most pS6-ir cells) occurred in reproductive males exposed to the advertisement call.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Behavior and Evolution
Brain Behavior and Evolution 医学-行为科学
CiteScore
3.10
自引率
23.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: ''Brain, Behavior and Evolution'' is a journal with a loyal following, high standards, and a unique profile as the main outlet for the continuing scientific discourse on nervous system evolution. The journal publishes comparative neurobiological studies that focus on nervous system structure, function, or development in vertebrates as well as invertebrates. Approaches range from the molecular over the anatomical and physiological to the behavioral. Despite this diversity, most papers published in ''Brain, Behavior and Evolution'' include an evolutionary angle, at least in the discussion, and focus on neural mechanisms or phenomena. Some purely behavioral research may be within the journal’s scope, but the suitability of such manuscripts will be assessed on a case-by-case basis. The journal also publishes review articles that provide critical overviews of current topics in evolutionary neurobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信