Illinois Journal of Mathematics最新文献

筛选
英文 中文
Strategies of solubility enhancement and perspectives in solubility measurements of pharmaceutical compounds. 提高药用化合物溶解度的策略和溶解度测量的前景。
IF 3.4
Illinois Journal of Mathematics Pub Date : 2020-09-27 eCollection Date: 2020-01-01 DOI: 10.5599/admet.910
Christel A S Bergström, Antonio Llinas
{"title":"Strategies of solubility enhancement and perspectives in solubility measurements of pharmaceutical compounds.","authors":"Christel A S Bergström, Antonio Llinas","doi":"10.5599/admet.910","DOIUrl":"10.5599/admet.910","url":null,"abstract":"","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"23 1","pages":"176-179"},"PeriodicalIF":3.4,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88147990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bi-Lipschitz geometry of quasiconformal trees 拟共形树的Bi-Lipschitz几何
IF 0.6
Illinois Journal of Mathematics Pub Date : 2020-07-23 DOI: 10.1215/00192082-9936324
G. David, Vyron Vellis
{"title":"Bi-Lipschitz geometry of quasiconformal trees","authors":"G. David, Vyron Vellis","doi":"10.1215/00192082-9936324","DOIUrl":"https://doi.org/10.1215/00192082-9936324","url":null,"abstract":"A quasiconformal tree is a doubling metric tree in which the diameter of each arc is bounded above by a fixed multiple of the distance between its endpoints. We study the geometry of these trees in two directions. First, we construct a catalog of metric trees in a purely combinatorial way, and show that every quasiconformal tree is bi-Lipschitz equivalent to one of the trees in our catalog. This is inspired by results of Herron-Meyer and Rohde for quasi-arcs. Second, we show that a quasiconformal tree bi-Lipschitz embeds in a Euclidean space if and only if its set of leaves admits such an embedding. In particular, all quasi-arcs bi-Lipschitz embed into some Euclidean space.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43332539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The wild McKay correspondence for cyclic groups of prime power order 素数幂次循环群的野McKay对应
IF 0.6
Illinois Journal of Mathematics Pub Date : 2020-06-22 DOI: 10.1215/00192082-9402078
Mahito Tanno, Takehiko Yasuda
{"title":"The wild McKay correspondence for cyclic groups of prime power order","authors":"Mahito Tanno, Takehiko Yasuda","doi":"10.1215/00192082-9402078","DOIUrl":"https://doi.org/10.1215/00192082-9402078","url":null,"abstract":"The $boldsymbol{v}$-function is a key ingredient in the wild McKay correspondence. In this paper, we give a formula to compute it in terms of valuations of Witt vectors, when the given group is a cyclic group of prime power order. We apply it to study singularities of a quotient variety by a cyclic group of prime square order. We give a criterion whether the stringy motive of the quotient variety converges or not. Furthermore, if the given representation is indecomposable, then we also give a simple criterion for the quotient variety being terminal, canonical, log canonical, and not log canonical.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49068321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Two weighted inequalities for operators associated to a critical radius function 临界半径函数相关算子的两个加权不等式
IF 0.6
Illinois Journal of Mathematics Pub Date : 2020-06-01 DOI: 10.1215/00192082-8360714
B. Bongioanni, E. Harboure, P. Quijano
{"title":"Two weighted inequalities for operators associated to a critical radius function","authors":"B. Bongioanni, E. Harboure, P. Quijano","doi":"10.1215/00192082-8360714","DOIUrl":"https://doi.org/10.1215/00192082-8360714","url":null,"abstract":"","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"64 1","pages":"227-259"},"PeriodicalIF":0.6,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47662448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
On the converse law of large numbers 关于大数逆律
IF 0.6
Illinois Journal of Mathematics Pub Date : 2020-06-01 DOI: 10.1215/00192082-8303485
H. Keisler, Yeneng Sun
{"title":"On the converse law of large numbers","authors":"H. Keisler, Yeneng Sun","doi":"10.1215/00192082-8303485","DOIUrl":"https://doi.org/10.1215/00192082-8303485","url":null,"abstract":"Given a triangular array with mn random variables in the n-th row and a growth rate {kn}n=1 with lim supn→∞(kn/mn) < 1, if the empirical distributions converge for any sub-arrays with the same growth rate, then the triangular array is asymptotically independent. In other words, if the empirical distribution of any kn random variables in the n-th row of the triangular array is asymptotically close in probability to the law of a randomly selected random variable among these kn random variables, then two randomly selected random variables from the n-th row of the triangular array are asymptotically close to being independent. This provides a converse law of large numbers by deriving asymptotic independence from a sample stability condition. It follows that a triangular array of random variables is asymptotically independent if and only if the empirical distributions converge for any sub-arrays with a given asymptotic density in (0, 1). Our proof is based on nonstandard analysis, a general method arisen from mathematical logic, and Loeb measure spaces in particular.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41608151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the Banach algebra structure for C(n) of the bidisc and related topics 关于二阶C(n)的Banach代数结构及相关问题
IF 0.6
Illinois Journal of Mathematics Pub Date : 2020-06-01 DOI: 10.1215/00192082-8303477
R. Tapdigoglu
{"title":"On the Banach algebra structure for C(n) of the bidisc and related topics","authors":"R. Tapdigoglu","doi":"10.1215/00192082-8303477","DOIUrl":"https://doi.org/10.1215/00192082-8303477","url":null,"abstract":"Let C(n)=C(n)(D×D) be a Banach space of complex valued functions f(x,y) that are continuous on the closed bidisc D×D¯, where D={z∈C:|z|<1} is the unit disc in the complex plane C and has nth partial derivatives in D×D which can be extended to functions continuous on D×D¯. The Duhamel product is defined on C(n) by the formula (f⊛g)(z,w)=∂2∂z∂w∫0z∫0wf(z−u,w−v)g(u,v)dvdu. In the present paper we prove that C(n)(D×D) is a Banach algebra with respect to the Duhamel product ⊛. This result extends some known results. We also investigate the structure of the set of all extended eigenvalues and extended eigenvectors of some double integration operator Wzw. In particular, the commutant of the double integration operator Wzw is also described.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48221528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Boundary behavior of the Carathéodory and Kobayashi–Eisenman volume elements carathamesodory和Kobayashi-Eisenman体元的边界行为
IF 0.6
Illinois Journal of Mathematics Pub Date : 2020-06-01 DOI: 10.1215/00192082-8303461
Diganta Borah, Debaprasanna Kar
{"title":"Boundary behavior of the Carathéodory and Kobayashi–Eisenman volume elements","authors":"Diganta Borah, Debaprasanna Kar","doi":"10.1215/00192082-8303461","DOIUrl":"https://doi.org/10.1215/00192082-8303461","url":null,"abstract":"","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"43 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82285606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Quasisymmetric Koebe uniformization with weak metric doubling measures 弱度量加倍测度的准对称Koebe均匀化
IF 0.6
Illinois Journal of Mathematics Pub Date : 2020-05-04 DOI: 10.1215/00192082-9501456
Kai Rajala, Martti Rasimus
{"title":"Quasisymmetric Koebe uniformization with weak metric doubling measures","authors":"Kai Rajala, Martti Rasimus","doi":"10.1215/00192082-9501456","DOIUrl":"https://doi.org/10.1215/00192082-9501456","url":null,"abstract":"We give a characterization of metric spaces quasisymmetrically equivalent to a finitely connected circle domain. This result generalizes the uniformization of Ahlfors 2-regular spaces by Merenkov and Wildrick.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41360955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Maximum principles for generalized Schrödinger equations 广义Schrödinger方程的极大值原理
IF 0.6
Illinois Journal of Mathematics Pub Date : 2020-04-01 DOI: 10.1215/00192082-8165622
M. Takeda
{"title":"Maximum principles for generalized Schrödinger equations","authors":"M. Takeda","doi":"10.1215/00192082-8165622","DOIUrl":"https://doi.org/10.1215/00192082-8165622","url":null,"abstract":"","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"64 1","pages":"119-139"},"PeriodicalIF":0.6,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49160051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Extending Huppert’s conjecture to almost simple groups of Lie type 将Huppert猜想推广到李型几乎简单群
IF 0.6
Illinois Journal of Mathematics Pub Date : 2020-04-01 DOI: 10.1215/00192082-8165590
Farrokh Shirjian, A. Iranmanesh
{"title":"Extending Huppert’s conjecture to almost simple groups of Lie type","authors":"Farrokh Shirjian, A. Iranmanesh","doi":"10.1215/00192082-8165590","DOIUrl":"https://doi.org/10.1215/00192082-8165590","url":null,"abstract":"","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"64 1","pages":"49-69"},"PeriodicalIF":0.6,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49194881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信