On the converse law of large numbers

IF 0.6 Q3 MATHEMATICS
H. Keisler, Yeneng Sun
{"title":"On the converse law of large numbers","authors":"H. Keisler, Yeneng Sun","doi":"10.1215/00192082-8303485","DOIUrl":null,"url":null,"abstract":"Given a triangular array with mn random variables in the n-th row and a growth rate {kn}n=1 with lim supn→∞(kn/mn) < 1, if the empirical distributions converge for any sub-arrays with the same growth rate, then the triangular array is asymptotically independent. In other words, if the empirical distribution of any kn random variables in the n-th row of the triangular array is asymptotically close in probability to the law of a randomly selected random variable among these kn random variables, then two randomly selected random variables from the n-th row of the triangular array are asymptotically close to being independent. This provides a converse law of large numbers by deriving asymptotic independence from a sample stability condition. It follows that a triangular array of random variables is asymptotically independent if and only if the empirical distributions converge for any sub-arrays with a given asymptotic density in (0, 1). Our proof is based on nonstandard analysis, a general method arisen from mathematical logic, and Loeb measure spaces in particular.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-8303485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Given a triangular array with mn random variables in the n-th row and a growth rate {kn}n=1 with lim supn→∞(kn/mn) < 1, if the empirical distributions converge for any sub-arrays with the same growth rate, then the triangular array is asymptotically independent. In other words, if the empirical distribution of any kn random variables in the n-th row of the triangular array is asymptotically close in probability to the law of a randomly selected random variable among these kn random variables, then two randomly selected random variables from the n-th row of the triangular array are asymptotically close to being independent. This provides a converse law of large numbers by deriving asymptotic independence from a sample stability condition. It follows that a triangular array of random variables is asymptotically independent if and only if the empirical distributions converge for any sub-arrays with a given asymptotic density in (0, 1). Our proof is based on nonstandard analysis, a general method arisen from mathematical logic, and Loeb measure spaces in particular.
关于大数逆律
给定第n行中有mn个随机变量的三角形阵列和增长率{kn}n=1,含lim supn→∞(kn/mn)<1,如果经验分布对于任何具有相同增长率的子阵列收敛,则三角阵列是渐近独立的。换言之,如果三角形阵列第n行中任意kn个随机变量的经验分布在概率上渐近接近于这些kn个随机变数中随机选择的随机变量的定律,则三角形阵列第n行中的两个随机选择随机变量渐近接近于独立。这通过从样本稳定性条件导出渐近独立性,提供了一个大数逆定律。因此,随机变量的三角形阵列是渐近独立的,当且仅当经验分布在(0,1)中具有给定渐近密度的任何子阵列上收敛。我们的证明是基于非标准分析,这是一种源自数理逻辑的通用方法,尤其是Loeb测度空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信