On the Banach algebra structure for C(n) of the bidisc and related topics

IF 0.6 Q3 MATHEMATICS
R. Tapdigoglu
{"title":"On the Banach algebra structure for C(n) of the bidisc and related topics","authors":"R. Tapdigoglu","doi":"10.1215/00192082-8303477","DOIUrl":null,"url":null,"abstract":"Let C(n)=C(n)(D×D) be a Banach space of complex valued functions f(x,y) that are continuous on the closed bidisc D×D¯, where D={z∈C:|z|<1} is the unit disc in the complex plane C and has nth partial derivatives in D×D which can be extended to functions continuous on D×D¯. The Duhamel product is defined on C(n) by the formula (f⊛g)(z,w)=∂2∂z∂w∫0z∫0wf(z−u,w−v)g(u,v)dvdu. In the present paper we prove that C(n)(D×D) is a Banach algebra with respect to the Duhamel product ⊛. This result extends some known results. We also investigate the structure of the set of all extended eigenvalues and extended eigenvectors of some double integration operator Wzw. In particular, the commutant of the double integration operator Wzw is also described.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-8303477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Let C(n)=C(n)(D×D) be a Banach space of complex valued functions f(x,y) that are continuous on the closed bidisc D×D¯, where D={z∈C:|z|<1} is the unit disc in the complex plane C and has nth partial derivatives in D×D which can be extended to functions continuous on D×D¯. The Duhamel product is defined on C(n) by the formula (f⊛g)(z,w)=∂2∂z∂w∫0z∫0wf(z−u,w−v)g(u,v)dvdu. In the present paper we prove that C(n)(D×D) is a Banach algebra with respect to the Duhamel product ⊛. This result extends some known results. We also investigate the structure of the set of all extended eigenvalues and extended eigenvectors of some double integration operator Wzw. In particular, the commutant of the double integration operator Wzw is also described.
关于二阶C(n)的Banach代数结构及相关问题
设C(n)=C(n)(D×D)是复值函数f(x,y)在闭合双平面D×D¯上连续的一个Banach空间,其中D={z∈C:|z|<1}是复平面C上的单位圆盘,在D×D上有n个偏导数,可以推广到D×D¯上的连续函数。Duhamel积在C(n)上由公式(f * * g)(z,w)=∂2∂z∂w∫0z∫0wf(z−u,w−v)g(u,v)dvdu定义。本文证明了C(n)(D×D)是关于Duhamel积的Banach代数。这个结果扩展了一些已知的结果。我们还研究了某些二重积分算子Wzw的所有扩展特征值和扩展特征向量集合的结构。特别地,还描述了二重积分算子Wzw的交换子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信