弱度量加倍测度的准对称Koebe均匀化

IF 0.6 Q3 MATHEMATICS
Kai Rajala, Martti Rasimus
{"title":"弱度量加倍测度的准对称Koebe均匀化","authors":"Kai Rajala, Martti Rasimus","doi":"10.1215/00192082-9501456","DOIUrl":null,"url":null,"abstract":"We give a characterization of metric spaces quasisymmetrically equivalent to a finitely connected circle domain. This result generalizes the uniformization of Ahlfors 2-regular spaces by Merenkov and Wildrick.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quasisymmetric Koebe uniformization with weak metric doubling measures\",\"authors\":\"Kai Rajala, Martti Rasimus\",\"doi\":\"10.1215/00192082-9501456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a characterization of metric spaces quasisymmetrically equivalent to a finitely connected circle domain. This result generalizes the uniformization of Ahlfors 2-regular spaces by Merenkov and Wildrick.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-9501456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-9501456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

给出了度量空间拟对称等价于有限连通圆域的一个刻画。这一结果推广了Merenkov和Wildrick对Ahlfors2-正则空间的一致化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasisymmetric Koebe uniformization with weak metric doubling measures
We give a characterization of metric spaces quasisymmetrically equivalent to a finitely connected circle domain. This result generalizes the uniformization of Ahlfors 2-regular spaces by Merenkov and Wildrick.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信