{"title":"素数幂次循环群的野McKay对应","authors":"Mahito Tanno, Takehiko Yasuda","doi":"10.1215/00192082-9402078","DOIUrl":null,"url":null,"abstract":"The $\\boldsymbol{v}$-function is a key ingredient in the wild McKay correspondence. In this paper, we give a formula to compute it in terms of valuations of Witt vectors, when the given group is a cyclic group of prime power order. We apply it to study singularities of a quotient variety by a cyclic group of prime square order. We give a criterion whether the stringy motive of the quotient variety converges or not. Furthermore, if the given representation is indecomposable, then we also give a simple criterion for the quotient variety being terminal, canonical, log canonical, and not log canonical.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The wild McKay correspondence for cyclic groups of prime power order\",\"authors\":\"Mahito Tanno, Takehiko Yasuda\",\"doi\":\"10.1215/00192082-9402078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The $\\\\boldsymbol{v}$-function is a key ingredient in the wild McKay correspondence. In this paper, we give a formula to compute it in terms of valuations of Witt vectors, when the given group is a cyclic group of prime power order. We apply it to study singularities of a quotient variety by a cyclic group of prime square order. We give a criterion whether the stringy motive of the quotient variety converges or not. Furthermore, if the given representation is indecomposable, then we also give a simple criterion for the quotient variety being terminal, canonical, log canonical, and not log canonical.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-9402078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-9402078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The wild McKay correspondence for cyclic groups of prime power order
The $\boldsymbol{v}$-function is a key ingredient in the wild McKay correspondence. In this paper, we give a formula to compute it in terms of valuations of Witt vectors, when the given group is a cyclic group of prime power order. We apply it to study singularities of a quotient variety by a cyclic group of prime square order. We give a criterion whether the stringy motive of the quotient variety converges or not. Furthermore, if the given representation is indecomposable, then we also give a simple criterion for the quotient variety being terminal, canonical, log canonical, and not log canonical.
期刊介绍:
IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers.
IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.