素数幂次循环群的野McKay对应

IF 0.6 Q3 MATHEMATICS
Mahito Tanno, Takehiko Yasuda
{"title":"素数幂次循环群的野McKay对应","authors":"Mahito Tanno, Takehiko Yasuda","doi":"10.1215/00192082-9402078","DOIUrl":null,"url":null,"abstract":"The $\\boldsymbol{v}$-function is a key ingredient in the wild McKay correspondence. In this paper, we give a formula to compute it in terms of valuations of Witt vectors, when the given group is a cyclic group of prime power order. We apply it to study singularities of a quotient variety by a cyclic group of prime square order. We give a criterion whether the stringy motive of the quotient variety converges or not. Furthermore, if the given representation is indecomposable, then we also give a simple criterion for the quotient variety being terminal, canonical, log canonical, and not log canonical.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The wild McKay correspondence for cyclic groups of prime power order\",\"authors\":\"Mahito Tanno, Takehiko Yasuda\",\"doi\":\"10.1215/00192082-9402078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The $\\\\boldsymbol{v}$-function is a key ingredient in the wild McKay correspondence. In this paper, we give a formula to compute it in terms of valuations of Witt vectors, when the given group is a cyclic group of prime power order. We apply it to study singularities of a quotient variety by a cyclic group of prime square order. We give a criterion whether the stringy motive of the quotient variety converges or not. Furthermore, if the given representation is indecomposable, then we also give a simple criterion for the quotient variety being terminal, canonical, log canonical, and not log canonical.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-9402078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-9402078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

$\boldsymbol{v}$-函数是狂野的McKay对应关系中的一个关键成分。在本文中,当给定的群是素数幂阶的循环群时,我们给出了一个根据Witt向量的值来计算它的公式。我们用它来研究素数平方阶循环群商变的奇点。我们给出了商变差的弦动机是否收敛的一个判据。此外,如果给定的表示是不可分解的,那么我们还给出了商变化是终端的、规范的、对数规范的和非对数规范的一个简单标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The wild McKay correspondence for cyclic groups of prime power order
The $\boldsymbol{v}$-function is a key ingredient in the wild McKay correspondence. In this paper, we give a formula to compute it in terms of valuations of Witt vectors, when the given group is a cyclic group of prime power order. We apply it to study singularities of a quotient variety by a cyclic group of prime square order. We give a criterion whether the stringy motive of the quotient variety converges or not. Furthermore, if the given representation is indecomposable, then we also give a simple criterion for the quotient variety being terminal, canonical, log canonical, and not log canonical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信