International Journal of Mechanical Sciences最新文献

筛选
英文 中文
Enhancing performance of sandwich panel with three-dimensional orthogonal accordion cores 用三维正交风琴式芯材提高夹芯板性能
IF 7.1 1区 工程技术
International Journal of Mechanical Sciences Pub Date : 2024-10-22 DOI: 10.1016/j.ijmecsci.2024.109787
Liu Rong, Zhong Yifeng, Cao Haiwen, Tang Yuxin, Chen Minfang
{"title":"Enhancing performance of sandwich panel with three-dimensional orthogonal accordion cores","authors":"Liu Rong,&nbsp;Zhong Yifeng,&nbsp;Cao Haiwen,&nbsp;Tang Yuxin,&nbsp;Chen Minfang","doi":"10.1016/j.ijmecsci.2024.109787","DOIUrl":"10.1016/j.ijmecsci.2024.109787","url":null,"abstract":"<div><div>This study introduces a novel three-dimensional orthogonal accordion structure (3D-OAS) as the cellular core of sandwich panels, achieving multi-directional zero Poisson’s ratio through the orthogonal combination of two-dimensional accordion structures. To analyze its static characteristics effectively, a two-dimensional equivalent Reissner–Mindlin model (2D-ERM) was established utilizing the variational asymptotic method (VAM). The accuracy of 2D-ERM was confirmed by conducting three-point bending tests on 3D-printed specimens and analyzing the in-plane and out-of-plane deformation results of the 3D finite element model (3D-FEM). The comparison of global displacement contours and path-displacement curves between 3D-FEM and 2D-ERM showed a high level of agreement in predicting static deformation. The equivalent stiffness of SP-3D-OAS steadily increased as the inclined angle deviates by 90-degree, irrespective of whether it pertains to the convex or concave angle. Evaluation of deformability in sandwich panels with different cellular core forms revealed superior comprehensive performance in 3D-OAS, followed by 3D-YRS and 3D-XYAS, with a reduction of 16.41% and 17.35% in specific stiffness, respectively. Compared to the 3D-FEM, 2D-ERM significantly reduces computation time without compromising engineering accuracy. The research results provide a useful reference for optimal design of sandwich panels with multi-directional ZPR cellular core.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109787"},"PeriodicalIF":7.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic modeling of periodic beams under uncertain boundary conditions and environmental fluctuations 不确定边界条件和环境波动下的周期梁随机建模
IF 7.1 1区 工程技术
International Journal of Mechanical Sciences Pub Date : 2024-10-21 DOI: 10.1016/j.ijmecsci.2024.109779
Vinícius M. de S. Santos , Yuri A. D. Martins , Henrique E. A. A. dos Santos , Thiago de P. Sales , Domingos A. Rade
{"title":"Stochastic modeling of periodic beams under uncertain boundary conditions and environmental fluctuations","authors":"Vinícius M. de S. Santos ,&nbsp;Yuri A. D. Martins ,&nbsp;Henrique E. A. A. dos Santos ,&nbsp;Thiago de P. Sales ,&nbsp;Domingos A. Rade","doi":"10.1016/j.ijmecsci.2024.109779","DOIUrl":"10.1016/j.ijmecsci.2024.109779","url":null,"abstract":"<div><div>Periodic structures have been attracting a great deal of academic and industrial interest lately, due to their distinctive vibration and wave propagation behavior, which can be explored for the development of innovative solutions to structural dynamics and vibroacoustic problems. Although such a potential has been demonstrated in a large number of studies, the investigation of detrimental effects, which can be present in practical applications, is still necessary. This paper reports investigations on the combined influence of uncertainties affecting ambient temperature — which alters material properties and induces stress-stiffening due to constrained thermal dilatation — and boundary conditions (BCs) on the bandgap characteristics of periodic beams. The space-dependent temperature fluctuations are represented as a one-dimensional stationary Gaussian random field, discretized using the Karhunen-Loève expansion, while non-ideal BCs, represented as springs, are modeled as discrete random variables. Sampling-based stochastic analyses of the central frequency and bandwidth of the beam’s attenuation bands are performed using Monte Carlo simulations. The results demonstrate that the variability in the attenuation band features is influenced not only by the coefficients of variation (CVs) of the input random quantities, but also by the correlation length of the random temperature fluctuations. Numerical simulations reveal that the bandgap central frequency is primarily affected by the temperature random field, while the BCs govern the bandwidth. Although low CV and standard deviation values are obtained for the dispersion of the bandgap features, reliability analyses indicate that some designs exhibit low reliability. Increased variability in both the bandgap central frequency and bandwidth is observed for greater temperature correlation lengths and CVs. The contributions of the study include the proposal of a comprehensive stochastic modeling procedure duly accounting for relevant random influences, and evidencing that those influences can be significant, requiring consideration in the design of robust periodic structures.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109779"},"PeriodicalIF":7.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Attenuation of Lamb waves in coupled-resonator viscoelastic waveguide 耦合谐振器粘弹性波导中的兰姆波衰减
IF 7.1 1区 工程技术
International Journal of Mechanical Sciences Pub Date : 2024-10-19 DOI: 10.1016/j.ijmecsci.2024.109790
Yu-Ke Ma , Wei Guo , Yi-Ming Cui , Yan-Feng Wang , Vincent Laude , Yue-Sheng Wang
{"title":"Attenuation of Lamb waves in coupled-resonator viscoelastic waveguide","authors":"Yu-Ke Ma ,&nbsp;Wei Guo ,&nbsp;Yi-Ming Cui ,&nbsp;Yan-Feng Wang ,&nbsp;Vincent Laude ,&nbsp;Yue-Sheng Wang","doi":"10.1016/j.ijmecsci.2024.109790","DOIUrl":"10.1016/j.ijmecsci.2024.109790","url":null,"abstract":"<div><div>Guidance of elastic waves is one of the main applications of artificial crystal structures. The attenuation of the guided waves is, however, often overlooked, as most of the proposed waveguides only comprise ideal elastic materials. In this work, we study the propagation of evanescent Lamb waves guided in coupled-resonator viscoelastic waveguide (CRVW), with special attention to attenuation. CRVW is defined by considering a linear chain of coupled defect cavities in a phononic plate made of epoxy. The viscoelastic behavior of epoxy is characterized numerically by the Kelvin–Voigt (K–V) model. Based on finite element analysis, the complex band structure and the spectrum of frequency response function (FRF) are obtained. Due to viscosity, guided Lamb waves are spatially damped. Two theoretical models are devised to predict the displacement distributions inside and outside a bandgap for guided waves, respectively, considering either the first or the first two least evanescent Bloch waves identified in the complex band structure. A CRVW sample is fabricated and characterized experimentally by laser vibrometry. Evanescent Lamb waves are observed to be strongly confined along the waveguide and at the same time to decay rapidly along the waveguide axis. Experiments and numerical simulations are found to be in fair agreement. The present work is expected to inspire practical applications of highly confined viscoelastic phononic waveguides.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109790"},"PeriodicalIF":7.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gravity-guided snapping sequence in 3D modular multistable metamaterials 三维模块化多稳态超材料中的重力引导断裂序列
IF 7.1 1区 工程技术
International Journal of Mechanical Sciences Pub Date : 2024-10-19 DOI: 10.1016/j.ijmecsci.2024.109793
Jia-Jia Mao , Zeguang Wei , Liao-Liang Ke
{"title":"Gravity-guided snapping sequence in 3D modular multistable metamaterials","authors":"Jia-Jia Mao ,&nbsp;Zeguang Wei ,&nbsp;Liao-Liang Ke","doi":"10.1016/j.ijmecsci.2024.109793","DOIUrl":"10.1016/j.ijmecsci.2024.109793","url":null,"abstract":"<div><div>The snapping sequence of multistable metamaterials is critical for their applications in elastic wave control and energy release. Despite being a fundamental property, the effect of gravity on the snapping sequence has never been studied. This paper investigates the mechanical mechanism how structural gravity affects the snapping sequence of multistable metamaterials to construct deterministic static and dynamic snapping sequences. A biaxial snap-through availability three-dimensional (3D) modular multistable metamaterial (MMM) is developed. The 3D MMM is assembled from unit cells consisting of a dismountable middle bar (M-bar) and a fixed frame containing two bistable curved beams. Except experimental tests and numerical simulations, analytical analyses are also conducted to verify the snapping sequence induced by gravity in the 3D MMM. In addition, given that the M-bar is dismountable, the effects of its length on the mechanical properties and the impact resistance of the 3D MMM are discussed in detail. It is found that gravity can guide both static and dynamic deterministic snapping sequences of the 3D MMM to optimize the process of elastic wave propagation and energy release, and the proposed 3D MMM can enhance structural impact resistance through elastic deformations.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109793"},"PeriodicalIF":7.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing spongy-bone-like cellular materials: Matched topology and anisotropy 设计海绵骨状细胞材料:匹配拓扑和各向异性
IF 7.1 1区 工程技术
International Journal of Mechanical Sciences Pub Date : 2024-10-18 DOI: 10.1016/j.ijmecsci.2024.109788
Yang Hong , Xiang Li , Ziming Yan , Zhanli Liu , Zhuo Zhuang
{"title":"Designing spongy-bone-like cellular materials: Matched topology and anisotropy","authors":"Yang Hong ,&nbsp;Xiang Li ,&nbsp;Ziming Yan ,&nbsp;Zhanli Liu ,&nbsp;Zhuo Zhuang","doi":"10.1016/j.ijmecsci.2024.109788","DOIUrl":"10.1016/j.ijmecsci.2024.109788","url":null,"abstract":"<div><div>Bone is a natural material with properties such as high specific stiffness and strength. These exceptional mechanical properties are attributed to the meso-scale structure and elastic anisotropy of spongy bone. Replicating the topological traits and mechanical properties of spongy bone presents a novel opportunity to develop high-performance cellular materials. To achieve this, we propose an innovative framework for designing biomimetic cellular materials that match the trabecular structure and elastic anisotropy of spongy bone. This framework introduces a forward-flow design process that utilizes gradient-based feature tuning on a low-dimensional feature vector, transforming the complex inverse design problem into an efficient iterative process. A key innovation in our approach is the use of a pre-trained generative model, SliceGAN, to reconstruct 3D unit cells from 2D micro-CT images. This significantly reduces the cost and time associated with traditional layer-by-layer CT scans typically required for 3D training data. Numerical homogenization is then used to determine the effective elastic stiffness matrix, and a Fourier neural operator is trained to predict these matrices efficiently, greatly enhancing the computational efficiency of the design process. Using this framework, we successfully designed unit cells with topological traits and elastic anisotropy that closely approximate those of natural spongy bone. This opens new avenues for developing spongy-bone-mimetic cellular materials with exceptional mechanical properties. Moreover, the framework's versatility allows it to be extended to the design of other bio-inspired cellular materials.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109788"},"PeriodicalIF":7.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A reinvestigation on combined dry and wet adhesive contact considering surface tension 考虑表面张力的干湿胶粘剂组合接触再研究
IF 7.1 1区 工程技术
International Journal of Mechanical Sciences Pub Date : 2024-10-18 DOI: 10.1016/j.ijmecsci.2024.109770
Xinyao Zhu , Hongyu Wang , Lifeng Ma , Ganyun Huang , Jinju Chen , Wei Xu , Tianyan Liu
{"title":"A reinvestigation on combined dry and wet adhesive contact considering surface tension","authors":"Xinyao Zhu ,&nbsp;Hongyu Wang ,&nbsp;Lifeng Ma ,&nbsp;Ganyun Huang ,&nbsp;Jinju Chen ,&nbsp;Wei Xu ,&nbsp;Tianyan Liu","doi":"10.1016/j.ijmecsci.2024.109770","DOIUrl":"10.1016/j.ijmecsci.2024.109770","url":null,"abstract":"<div><div>The present study theoretically explores combined dry and wet adhesive contact between a rigid sphere and elastic semi-half substrate, in which dry contact is encircled by liquid bridge. We consider threefold effects of liquid bridge on contact behavior, namely Laplace pressure induced by the curved surface of liquid meniscus, surface tension at the triple-phase junction and alternation of adhesion energy between solid surfaces ascribed to liquid immersion. A clear novelty in this study is the investigation on the effect of surface tension at the vapor-liquid-solid junction on the adhesive contact response, in contrast to previous studies. The model solution predicts that the contact behavior and adhesive strength are strongly dependent on surface wettability (manifested by contact angle), liquid volume and the contact system's rapidity in achieving thermodynamic equilibrium. It is found that the transition of the pull-off force is evidently different from Maugis-Dugdale model in terms of a couple of interesting characteristics. Moreover, it is unveiled that the jump instabilities and hysteresis of force-separation curves are highly affected by surface wettability and liquid volume. These theoretical results can not only shed lights on the mechanism of liquid-mediated adhesion employed by animals and plants, but also provide us inspiration for development of biomimetic adhesive devices.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109770"},"PeriodicalIF":7.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian protocols for high-throughput identification of kinematic hardening model forms 高通量识别运动硬化模型形式的贝叶斯协议
IF 7.1 1区 工程技术
International Journal of Mechanical Sciences Pub Date : 2024-10-18 DOI: 10.1016/j.ijmecsci.2024.109791
Aditya Venkatraman , Camilla E. Johnson , David L. McDowell , Surya R. Kalidindi
{"title":"Bayesian protocols for high-throughput identification of kinematic hardening model forms","authors":"Aditya Venkatraman ,&nbsp;Camilla E. Johnson ,&nbsp;David L. McDowell ,&nbsp;Surya R. Kalidindi","doi":"10.1016/j.ijmecsci.2024.109791","DOIUrl":"10.1016/j.ijmecsci.2024.109791","url":null,"abstract":"<div><div>Constitutive models are essential for assessing the mechanical response of complex materials, yet uncertainties in model forms and parameters persist due to the influence of micromechanisms and microstructural features. We develop Bayesian protocols to iteratively refine both model forms and the associated material properties for complex constitutive models. Our aim is to provide rigorous, probabilistically informed evaluations of improvements achieved with increasing model complexity. Leveraging high-throughput experimental microindentation data, the protocols involve three steps: (i) emulating FE simulations using multi-output Gaussian process surrogate models, (ii) calibrating an initial simple constitutive model against experimental data, and (iii) progressively enhancing model complexity by iteratively improving agreement between simulations and experiments. The various model forms are compared using model form probabilities and aggregate discrepancies. Sobol indices are used to quantify the identifiability of material properties, aiming to prevent parameter proliferation. We apply this protocol to identify the optimal form of cyclic plasticity models for duplex Ti-6Al-4V. Although tailored for cyclic plasticity models, these protocols hold promise for calibrating and refining nonlinear constitutive models across diverse material classes.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109791"},"PeriodicalIF":7.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatigue life prediction of film-cooling Hole specimens with initial damage 具有初始损伤的薄膜冷却孔试样的疲劳寿命预测
IF 7.1 1区 工程技术
International Journal of Mechanical Sciences Pub Date : 2024-10-17 DOI: 10.1016/j.ijmecsci.2024.109789
Fei Li , Zhixun Wen , Lei Luo , Xi Ren , Zhufeng Yue
{"title":"Fatigue life prediction of film-cooling Hole specimens with initial damage","authors":"Fei Li ,&nbsp;Zhixun Wen ,&nbsp;Lei Luo ,&nbsp;Xi Ren ,&nbsp;Zhufeng Yue","doi":"10.1016/j.ijmecsci.2024.109789","DOIUrl":"10.1016/j.ijmecsci.2024.109789","url":null,"abstract":"<div><div>This study investigates a Nickel-based single crystal (SX) superalloy with femtosecond laser-drilled film-cooling holes (FCHs) under varying temperatures (room temperature, 850 °C, and 980 °C), employing a novel framework for predicting fatigue life based on initial manufacturing damage quantification. For all tested anisotropic SX superalloy specimens (including smooth and FCH specimens), the initial damage state is characterized as an equivalent initial flaw size (EIFS), and an EIFS calculation model considering stress concentration is established. Subsequently, the fatigue crack paths and microstructural characteristics of the FCH specimens at different temperatures are analyzed, elucidating crack initiation mechanisms and propagation patterns. A novel incremental plasticity J-integral driving force for fatigue crack propagation is introduced. By incorporating the closure effect of small crack propagation and employing Markov Chain Monte Carlo simulations for determining crack growth rate probabilities, a more accurate expression for the crack growth rate in relation to Δ<em>J<sub>fat</sub></em> − Δ<em>J<sub>th</sub></em> is derived. This expression comprehensively captures crack patterns on crystallographic planes and Type I mixed mode behavior. Finally, the total fatigue life of the FCH structures, featuring a threefold dispersion zone in both room and high-temperature environments, is predicted through experimental observations and description of crack growth rates. The predicted outcomes significantly outperform those of the conventional life prediction models reliant on crystal plasticity theory.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109789"},"PeriodicalIF":7.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-modal response control with multiple suspension-type tuned vibration absorbers 多悬挂式调谐减震器的多模式响应控制
IF 7.1 1区 工程技术
International Journal of Mechanical Sciences Pub Date : 2024-10-17 DOI: 10.1016/j.ijmecsci.2024.109775
Ning Su , Cong Zeng , Zhaoqing Chen , Jing Bian , Yi Xia
{"title":"Multi-modal response control with multiple suspension-type tuned vibration absorbers","authors":"Ning Su ,&nbsp;Cong Zeng ,&nbsp;Zhaoqing Chen ,&nbsp;Jing Bian ,&nbsp;Yi Xia","doi":"10.1016/j.ijmecsci.2024.109775","DOIUrl":"10.1016/j.ijmecsci.2024.109775","url":null,"abstract":"<div><div>Due to complicated excitations, engineering structures are often subjected to multi-modal responses. Considering the feasibility in practical installation on slender structures, multiple Suspension-type Tuned Vibration Absorbers (S-TVAs) are investigated for multi-modal response control. Firstly, parametric optimization of a single S-TVA for single-modal response control is investigated analytically. The issues regarding to the optimal tuning, static and dynamic performances, and installation location are addressed. Subsequently, an optimal design method for multi-modal response control with multiple S-TVAs is presented. Two aspects on the optimization strategy are discussed. Consequently, the optimization should be performed with an inverse modal order sequence. And, the modal information should be updated considering the S-TVA optimized in the previous step. Finally, the effectiveness of the presented optimal design method is validated through practical wind-induced response control on a slender chimney. The most unfavorable response can be suppressed up to 59.7 %, which is 47.8 % better than traditional single-modal control approach. Moreover, it is interesting to find that the practical overall control performance may not be achieved with more controlled modes intuitively. It is recommended to select from several practical cases determined by the presented optimal design method. Practical installation and feasibility are highly required to be considered in practice.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109775"},"PeriodicalIF":7.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A direct method to identify Young’s moduli and boundary conditions of the heterogeneous material 确定异质材料杨氏模量和边界条件的直接方法
IF 7.1 1区 工程技术
International Journal of Mechanical Sciences Pub Date : 2024-10-17 DOI: 10.1016/j.ijmecsci.2024.109777
Tian Xu , Murong Li , Zhen Wang , Yingda Hu , Shilun Du , Yong Lei
{"title":"A direct method to identify Young’s moduli and boundary conditions of the heterogeneous material","authors":"Tian Xu ,&nbsp;Murong Li ,&nbsp;Zhen Wang ,&nbsp;Yingda Hu ,&nbsp;Shilun Du ,&nbsp;Yong Lei","doi":"10.1016/j.ijmecsci.2024.109777","DOIUrl":"10.1016/j.ijmecsci.2024.109777","url":null,"abstract":"<div><div>Identifying unknown Young’s moduli and boundary conditions of the heterogeneous material using locally observed boundary data is the inverse problem which is generally solved by iterative methods. In this paper, a two-steps direct method is proposed for the first time to solve this inverse problem without iterations. The proposed method innovatively decomposes the heterogeneous elasticity inverse problem to two homogeneous elasticity sub-inverse problems. The single-data and multiple-data based direct methods are applied to identify background Young’s modulus and displacement boundary conditions, while the Maxwell–Betti principle based direct method and the equivalent boundary force based direct method are proposed to identify Young’s moduli of inclusions. In addition, an optimal experimental design method with a goal-oriented criterion is proposed to improve the accuracy of the two-steps direct method by optimizing the force application positions in observation data acquisition. Both numerical and physical experiments were conducted. The results demonstrate the feasibility of the proposed two-steps direct method and its optimal experimental design method.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109777"},"PeriodicalIF":7.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信