{"title":"Neural network-augmented differentiable finite element method for boundary value problems","authors":"","doi":"10.1016/j.ijmecsci.2024.109783","DOIUrl":"10.1016/j.ijmecsci.2024.109783","url":null,"abstract":"<div><div>Classical numerical methods such as finite element method (FEM) face limitations due to their low efficiency when addressing large-scale problems. As a novel paradigm, the physics-informed neural network (PINN) has demonstrated significant potential to solve partial differential equations. However, conventional PINNs utilize meshless control at discrete sampling points, which limits their ability to effectively handle complex boundaries. Moreover, catastrophic failure may occur in the deep energy method (DEM, a specific type of PINN). To handle these challenges, this study proposes a Neural Network-augmented Differentiable Finite Element Method (NNDFEM) by combining PINN and finite element approximation. In NNDFEM, the neural network backend solely predicts nodal variables. Derivatives and complex boundary conditions can be well handled by the finite element frontend. The governing equation over the domain, Dirichlet, and Neumann boundary conditions are directly enforced on the finite element frontend. Thus, losses of boundary conditions in PINN are rendered unnecessary. The overfitting problem in DEM is also significantly mitigated. Fully connected neural network (FCNN), modified FCNN, and graph-convolutional network are tested as backends. NNDFEM circumvents nodal force calculation and matrix assembly in FEM. Functional losses of linear elasticity, finite strain nonlinear elasticity, heat conduction, and flow in porous media are validated. A systematic exploration unveils the role of 3D finite element mesh. For large-scale problems, a multi-fidelity learning strategy is employed. Thus, the three-dimensional case with over three million degrees of freedom trains well in two minutes. Benefiting from the fast inference of the neural network backend, the forward pass is 8,550 times faster than FEM.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fragility analysis of tubular structures based on local-buckling driving variables","authors":"","doi":"10.1016/j.ijmecsci.2024.109776","DOIUrl":"10.1016/j.ijmecsci.2024.109776","url":null,"abstract":"<div><div>Performance-Based Earthquake Engineering (PBEE) is computationally demanding, due to the multiple high-fidelity nonlinear dynamic structural response analyses required to compute fragility curves. Local buckling of tubular steel structures is not properly characterized by typical Engineering Demand Parameters (EDPs) such as story drifts or plastic rotation angles. Targeting the two issues above, in this manuscript we propose using state variables based on Lumped Damage Mechanics (LDM) to characterize Local Buckling (LB) in PBEE. Hence, we propose an efficient and innovative procedure for the fragility analysis of complex tubular structures prone to fail due to local buckling. Moreover, local buckling produces a loss of stiffness, with loads transferred to intact or to less-damaged elements. Eventually, the structure forms a global collapse mechanism. Herein, we show how to identify the most likely global collapse mechanism in non-symmetrical tubular structures subjected to random seismic loading. This involves evaluating damage indices in different elements and their correlation, as well as identifying the combination of LB failures that are more likely to form a global collapse mechanism. Fragility curves characterizing the onset of LB at individual elements, and the most likely global collapse mechanism, are constructed. A simple frame structure is addressed, where the accuracy of the LB-LDM model is checked against experimental results. Another case study involving a non-symmetric tubular wharf illustrates the search for the most likely global collapse mechanism, and the derivation of its fragility function.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New hot workability prediction method under non-constant deformation conditions","authors":"","doi":"10.1016/j.ijmecsci.2024.109778","DOIUrl":"10.1016/j.ijmecsci.2024.109778","url":null,"abstract":"<div><div>The deformation conditions of metallic materials constantly change during forming and manufacturing technology. The thermomechanical processing theory cannot be applied to non-constant deformation conditions. The hot workability is a manifestation of the deformation conditions that affect the microstructure. This paper proposes a new prediction method based on artificial intelligence, considering the combined effect of microstructure state and deformation conditions. The hot deformation experiments under constant and non-constant deformation conditions validate the proposed method. Dynamic variation in deformation conditions significantly affects the hot workability. The findings indicate that reasonable control of the dynamic variation in deformation conditions during thermomechanical processing is conducive to improving the hot workability, providing new ways for equipment upgrading and process parameter optimization of some thermal processing technologies.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probabilistic risk assessment method considering machining-induced random residual stress","authors":"","doi":"10.1016/j.ijmecsci.2024.109785","DOIUrl":"10.1016/j.ijmecsci.2024.109785","url":null,"abstract":"<div><div>The aero-engine disks inevitably have manufacturing-induced anomalies and machining-induced random residual stress (RS) in localized and critical areas, which cause a severe threat to the safety of the aircraft. Traditional structural design of the disks fails to establish a quantitative correlation between the machining process and the failure risk. Therefore, this paper proposes a probabilistic model considering random RS to quantify the influence of machining RS subjected to low-cycle fatigue. The RS dispersion is quantified using a scaling parameter, obtained by X-ray diffraction measurements and orthogonal cutting simulations. The crack life database under varying RSs is established for efficient probability calculations. Results show that the coefficient of variation (COV) of the RS on the same machined surface with the same processing parameters is 7.62 % in the local area and 13.74 % in the whole machined surface. The risk results show that the probability of failure (POF) considering the deterministic RS is 2–4 % lower than the POF without RS, owing to the extension of fatigue life by compressive RS. Furthermore, the POF considering the random RS is almost the same (difference <0.6 %) as the POF considering the deterministic RS because the depth of the machining RS is around 0.2 mm. The proposed method predicts the POF more accurately and is thus valuable for the safety assessment of an aero-engine titanium disk.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tunable flexural waves by piezoelectric metasurface with shunt circuits","authors":"","doi":"10.1016/j.ijmecsci.2024.109769","DOIUrl":"10.1016/j.ijmecsci.2024.109769","url":null,"abstract":"<div><div>Elastic metasurfaces have been rapidly developed for effective modulation of elastic wave propagation. Among them, utilizing the electromechanical coupling effect of piezoelectric materials provides a promising way to design tunable and multifunctional elastic metasurfaces, but piezoelectric metasurfaces still face big challenges in theoretical guidance and experiments. In this paper, a tunable piezoelectric metasurface is proposed for achieving modulation of flexural wave in broad working frequency range. Based on the developed electromechanical coupling model, the piezoelectric patch with shunt resistor–inductor circuit is analyzed, and the functional unit of metasurface with only two piezoelectric patches is designed for modulating the flexural wave in thin plate. By using Antoniou’s circuit and considering the effect of impedance in circuit, the arbitral phase shift of functional unit is experimentally achieved by adjustable shunt circuits to verify the turnability in a full 2<span><math><mi>π</mi></math></span> range. Further, the piezoelectric metasurface by assembling functional units can realize multiple functions, like tunable anomalous refraction and wave focusing, by adjusting shunt circuits.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear dynamic behavior of a rotor-bearing system considering time-varying misalignment","authors":"","doi":"10.1016/j.ijmecsci.2024.109772","DOIUrl":"10.1016/j.ijmecsci.2024.109772","url":null,"abstract":"<div><div>The dynamic response of rotating systems supported by hydrodynamic bearings considering the journal deformation-induced misalignment has been investigated in recent years. However, most of the previous work studied misaligned angles as fixed configurations, ignoring the variation of misalignment due to the time-varying journal deformation. In this study, a numerical method is proposed to predict the dynamic response of a rotor-bearing system considering time-dependent misalignment. As journal deformation is recognized as a significant factor leading to misalignment, a flexible rotor is considered to determine the misalignment state. The finite element method is employed to calculate the dynamic deformation of the rotor and, hereby, the misaligned angles and film thickness. Subsequently, the pressure distributions of the oil film are calculated using the finite difference method to update the bearing force. The transient lubrication performance and the vibration response of the rotor are discussed based on the numerical computation. In particular, the difference in the oil whip phenomenon is compared between the aligned and misaligned conditions. The results show that the journal orientation varies with time considering the journal deflection. The discussion about the oil whip shows that the misalignment has a significant impact on the stability of the system. In addition, the transient lubrication properties are considerably influenced by the rotation speed and external loading since they affect the magnitude of the resonance vibration and the oil whip.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy absorption of the kirigami-inspired pyramid foldcore sandwich structures under low-velocity impact","authors":"","doi":"10.1016/j.ijmecsci.2024.109774","DOIUrl":"10.1016/j.ijmecsci.2024.109774","url":null,"abstract":"<div><div>Foldcore sandwich structures offer a promising alternative to conventional honeycomb sandwiches in the field of lightweight structures, demonstrating significant potential as efficient energy absorption devices. The dynamic behavior of foldcore sandwich structures is crucial in response to low-velocity impacts in various engineering scenarios such as bird strikes, airdrops, and vehicle collisions. This study investigates the dynamic responses of a kirigami-inspired pyramid foldcore sandwich subjected to low-velocity impacts, which has previously exhibited remarkable energy absorption efficiency under quasi-static compression. Through a combination of experimental investigations and numerical simulations under impact conditions, it is observed that the pyramid foldcore initially undergoes pronounced localized deformation which results in a sensitivity to the loading rate and causes the high initial peak stress. Different from the mechanism observed under quasi-static compression, additional stationary plastic hinges on the facets are triggered during the post-buckling stage, thereby slightly enhancing the overall energy absorption. Moreover, the multi-layer pyramid foldcores with graded geometries are proposed, characterized by varying height and wall thickness for each layer. The graded pyramid foldcores significantly reduce the initial peak stress while maintaining energy absorption efficiency. In comparison with the conventional square honeycomb and Miura-ori foldcore under the impact velocity of 10 m/s, the uniformity ratio of the graded pyramid foldcore decreases by 70.9 % and 80.5 %, while the specific energy absorption improves by 0.97 % and 138.37 %, respectively. To summarize, the graded pyramid foldcore shows outstanding energy absorption efficiency, indicating its potential as a high-performance sandwich structure for impact applications.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling the coupled bubble-arc-droplet evolution in underwater flux-cored arc welding","authors":"","doi":"10.1016/j.ijmecsci.2024.109754","DOIUrl":"10.1016/j.ijmecsci.2024.109754","url":null,"abstract":"<div><div>For the numerical simulation of underwater wet flux-cored arc welding, the most crucial issue is to investigate the intense interactions between the underwater bubble, arc plasma, and molten metal. However, it is a great challenge to couple them into a single numerical model. In this study, a 3D three-phase flow model is originally established, which successfully couples the dynamic bubble, arc, and droplet. A modified Lee model is employed to realize spontaneous phase transition from liquid water to bubble gas. According to the simulation results, the bubble evolution is divided into four main stages, and two bubble separation modes are recognized. It is found that, both the changing pressure field around the bubble and the varying flow direction of surrounding water contribute to the unique bubble evolution patterns. As for the droplet, its violent up-and-down oscillation at the wire tip is mainly caused by the opposite gas drag forces, which are produced by the turbulent gas flow inside the bubbles. The upward gas drag force can even make the neck of the droplet disappear. With different droplet detaching angles, two predominant droplet transfer modes are numerically produced; when the angle reaches 147°, the droplet is pushed away and becomes a spatter. Furthermore, the underwater arc is found to be subjected to compressions from both the radial direction due to bubble necking and the axial direction due to droplet growth. The arc temperature and velocity vary significantly not only during the whole droplet transfer period, but also within each bubble evolution cycle. To verify the reliability of the model, underwater welding experiments and visual sensing are conducted. The simulated results match well with the experimental ones, with an 8% error in the droplet transfer period and only a 1.4% error in the bubble evolution cycle.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A GAN-based stepwise full-field mechanical prediction model for architected metamaterials","authors":"","doi":"10.1016/j.ijmecsci.2024.109771","DOIUrl":"10.1016/j.ijmecsci.2024.109771","url":null,"abstract":"<div><div>The exploration of mechanical metamaterials, characterized by unique unit cells with significant macroscopic mechanical properties, is of crucial importance. Traditional methods relying on bioinspired structures lack broad design space and controllability to some extent, especially when practical requirements have no biological counterparts. Hence, there is a pressing need to advance methodologies for the expansive design of unit cells, catering to diverse practical demands. Inspired by architected material, a latent design paradigm gains prominence for its extensive possibilities and unique distribution. However, wide design space faces challenges in accurately assessing the deformation history and stress states of diverse units, requiring validation through experiments or simulations, and imposing efficiency constraints on design. Using patterns generated by a mimetic corrosion algorithm and computational simulations, a GAN-based machine learning surrogate model is constructed to predict the history of deformation and stress fields of architected unit cells with accuracy and efficiency, in which a stepwise mapping strategy is proposed to augment comprehension of mechanical information in image processing. In distinct cases covering both explored domains and several unexplored domains, the model achieves effective predictions, demonstrating the robustness and adaptability of the model in extrapolating predictions of both time domain and design space. The proposed method demonstrates efficacy, stability, and generalizability, pioneering a solution for the mechanical history prediction of architected metamaterials in a sparse data setting, thereby overcoming the limitations of the training set.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Backward motion suppression in space-constrained piezoelectric pipeline robots","authors":"","doi":"10.1016/j.ijmecsci.2024.109746","DOIUrl":"10.1016/j.ijmecsci.2024.109746","url":null,"abstract":"<div><div>In response to the current challenges of detecting micro pipelines, a micro pipeline robot based on the principle of piezoelectric inertia stick-slip drive was proposed in this paper, which can be effectively applied to the detection and maintenance of micro pipelines. However, during the analysis of the robot's displacement trajectory, it was observed that using inertial drive could cause the backward motion of the robot. This may adversely affect the accuracy and stability of the robot's operation within the micro pipelines. Therefore, a novel control method is derived from the original pipeline robot structure. By affixing piezoelectric sheets to the driving feet of the robot to adjust their deformation and subsequently employing collaborative control of piezoelectric sheets and piezoelectric stacks to regulate friction between the driving feet and the pipe wall, the backward motion of the robot was effectively mitigated. Compared to existing backward motion suppression methods, the approach proposed in this paper has a minimal impact on the actuator's size, allowing for flexible adaptation to various space-constrained applications, while also offering the advantage of a simple control strategy. After determining the structure and working principle, deformation analysis of the driving foot and dynamic simulation analysis of the driving system were conducted. These analyses provide insights into the relationship between mechanical and electrical parameters and output performance within the driving system, thereby validating the feasibility of the control method. Subsequently, a prototype was fabricated, and its output performance was tested. Results demonstrate that this control method can effectively suppress inertial backward motion, achieving a suppression rate close to 100 %. This research presents a novel idea and methodology for mitigating the backward motion of piezoelectric inertial stick-slip actuators with driving foot structures.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}