{"title":"Somatosensory Tinnitus: Recent Developments in Diagnosis and Treatment.","authors":"Sarah Michiels","doi":"10.1007/s10162-023-00912-3","DOIUrl":"10.1007/s10162-023-00912-3","url":null,"abstract":"<p><p>Somatosensory tinnitus (ST) is a type of tinnitus where changes in somatosensory input from the head-neck area are one of the influencing factors of a patient's tinnitus. As there are often several influencing factors, identifying a clear somatosensory influence on an individual patient's tinnitus is often a challenge. Therefore, a decision tree using four clinical criteria has been proposed that can help diagnose ST with an accuracy of 82.2%, a sensitivity of 82.5%, and a specificity of 79%. Once correctly diagnosed, patients can be successfully treated using a musculoskeletal physical therapy treatment. This type of treatment can either be directed at cervical spine dysfunctions, temporomandibular disorders, or both and consists of a combination of counseling, exercises, and manual techniques to restore normal function of the cervical spine and temporomandibular area. Other techniques have been suggested but need further investigation in larger RCTs. In most cases, ST treatment shows a decrease in tinnitus severity or loudness, but in rare cases, total remission of the tinnitus is achieved.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"465-472"},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695899/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41161792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas A Waring, Alexander Chern, Brandon J Vilarello, Jeffrey H Lang, Elizabeth S Olson, Hideko Heidi Nakajima
{"title":"Sheep as a Large-Animal Model for Otology Research: Temporal Bone Extraction and Transmastoid Facial Recess Surgical Approach.","authors":"Nicholas A Waring, Alexander Chern, Brandon J Vilarello, Jeffrey H Lang, Elizabeth S Olson, Hideko Heidi Nakajima","doi":"10.1007/s10162-023-00907-0","DOIUrl":"10.1007/s10162-023-00907-0","url":null,"abstract":"<p><strong>Purpose: </strong>Sheep are used as a large-animal model for otology research and can be used to study implantable hearing devices. However, a method for temporal bone extraction in sheep, which enables various experiments, has not been described, and literature on middle ear access is limited. We describe a method for temporal bone extraction and an extended facial recess surgical approach to the middle ear in sheep.</p><p><strong>Methods: </strong>Ten temporal bones from five Hampshire sheep head cadavers were extracted using an oscillating saw. After craniotomy and removal of the brain, a coronal cut was made at the posterior aspect of the orbit followed by a midsagittal cut of the occipital bone and disarticulation of the atlanto-occipital joint. Temporal bones were surgically prepared with an extended facial recess approach. Micro-CT scans of each temporal bone were obtained, and anatomic dimensions were measured.</p><p><strong>Results: </strong>Temporal bone extraction was successful in 10/10 temporal bones. Extended facial recess approach exposed the malleus, incus, stapes, and round window while preserving the facial nerve, with the following surgical considerations: minimally pneumatized mastoid; tegmen (superior limit of mastoid cavity) is low-lying and sits below temporal artery; chorda tympani sacrificed to optimize middle ear exposure; incus buttress does not obscure view of middle ear. Distance between the superior aspect of external auditory canal and tegmen was 2.7 (SD 0.9) mm.</p><p><strong>Conclusion: </strong>We identified anatomic landmarks for temporal bone extraction and describe an extended facial recess approach in sheep that exposes the ossicles and round window. This approach is feasible for studying implantable hearing devices.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"487-497"},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10178316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pei-Zhe Wu, Jennifer T O'Malley, M Charles Liberman
{"title":"Neural Degeneration in Normal-Aging Human Cochleas: Machine-Learning Counts and 3D Mapping in Archival Sections.","authors":"Pei-Zhe Wu, Jennifer T O'Malley, M Charles Liberman","doi":"10.1007/s10162-023-00909-y","DOIUrl":"10.1007/s10162-023-00909-y","url":null,"abstract":"<p><p>Quantifying the survival patterns of spiral ganglion cells (SGCs), the cell bodies of auditory-nerve fibers, is critical to studies of sensorineural hearing loss, especially in human temporal bones. The classic method of manual counting is tedious, and, although stereology approaches can be faster, they can only be used to estimate total cell numbers per cochlea. Here, a machine-learning algorithm that automatically identifies, counts, and maps the SGCs in digitized images of semi-serial human temporal-bone sections not only speeds the analysis, with no loss of accuracy, but also allows 3D visualization of the SGCs and fine-grained mapping to cochlear frequency. Applying the algorithm to 62 normal-aging human ears shows significantly faster degeneration of SGCs in the basal than the apical half of the cochlea. Comparison to fiber counts in the same ears shows that the fraction of surviving SGCs lacking a peripheral axon steadily increases with age, reaching more than 50% in the apical cochlea and almost 66% in basal regions.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"499-511"},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92157478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joost Johannes Antonius Stultiens, Richard F Lewis, James O Phillips, Anissa Boutabla, Charles C Della Santina, Rudolf Glueckert, Raymond van de Berg
{"title":"The Next Challenges of Vestibular Implantation in Humans.","authors":"Joost Johannes Antonius Stultiens, Richard F Lewis, James O Phillips, Anissa Boutabla, Charles C Della Santina, Rudolf Glueckert, Raymond van de Berg","doi":"10.1007/s10162-023-00906-1","DOIUrl":"10.1007/s10162-023-00906-1","url":null,"abstract":"<p><p>Patients with bilateral vestibulopathy suffer from a variety of complaints, leading to a high individual and social burden. Available treatments aim to alleviate the impact of this loss and improve compensatory strategies. Early experiments with electrical stimulation of the vestibular nerve in combination with knowledge gained by cochlear implant research, have inspired the development of a vestibular neuroprosthesis that can provide the missing vestibular input. The feasibility of this concept was first demonstrated in animals and later in humans. Currently, several research groups around the world are investigating prototype vestibular implants, in the form of vestibular implants as well as combined cochlear and vestibular implants. The aim of this review is to convey the presentations and discussions from the identically named symposium that was held during the 2021 MidWinter Meeting of the Association for Research in Otolaryngology, with researchers involved in the development of vestibular implants targeting the ampullary nerves. Substantial advancements in the development have been made. Yet, research and development processes face several challenges to improve this neuroprosthesis. These include, but are not limited to, optimization of the electrical stimulation profile, refining the surgical implantation procedure, preserving residual labyrinthine functions including hearing, as well as gaining regulatory approval and establishing a clinical care infrastructure similar to what exists for cochlear implants. It is believed by the authors that overcoming these challenges will accelerate the development and increase the impact of a clinically applicable vestibular implant.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":"24 4","pages":"401-412"},"PeriodicalIF":2.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10304187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distortion Product Otoacoustic Emissions in Mice Above and Below the Eliciting Primaries.","authors":"Mary Ann Cheatham","doi":"10.1007/s10162-023-00903-4","DOIUrl":"10.1007/s10162-023-00903-4","url":null,"abstract":"<p><p>Normal hearing is associated with cochlear nonlinearity. When two tones (f1 and f2) are presented, the intracochlear response contains additional components that can be recorded from the ear canal as distortion product otoacoustic emissions (DPOAEs). Although the most prominent intermodulation distortion component is at 2f1-f2, other cubic distortion products are also generated. Because these measurements are noninvasive, they are used in humans and in animal models to detect hearing loss. This study evaluated how loss of sensitivity affects DPOAEs with frequencies above and below the stimulating primaries, i.e., for upper sideband (USB) components like 2f2-f1 and for lower sideband (LSB) components like 2f1-f2. DPOAEs were recorded in several mouse mutants with varying degrees of hearing loss associated with structural changes to the tectorial membrane (TM), or with loss of outer hair cell (OHC) somatic electromotility due to lack of prestin or to the expression of a non-functional prestin. In mice with changes in sensitivity, magnitude reductions were observed for 2f1-f2 relative to controls with mice lacking prestin showing the greatest changes. In contrast, 2f2-f1 was minimally affected by reductions in cochlear gain due to changes in the TM or by the loss of OHC somatic electromotility. In addition, TM mutants with spontaneous otoacoustic emissions (SOAEs) generated larger responses than controls at 2f2-f1 when its frequency was similar to that for the SOAEs. Although cochlear pathologies appear to affect USB and LSB DPOAEs in different ways, both 2f1-f2 and 2f2-f1 reflect nonlinearities associated with the transducer channels. However, in mice, the component at 2f2-f1 does not appear to receive enhancement due to prestin's motor action.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":"24 4","pages":"413-428"},"PeriodicalIF":2.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10300933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriela O Bom Braga, Annapaola Parrilli, Robert Zboray, Milica Bulatović, Franca Wagner
{"title":"Quantitative Evaluation of the 3D Anatomy of the Human Osseous Spiral Lamina Using MicroCT.","authors":"Gabriela O Bom Braga, Annapaola Parrilli, Robert Zboray, Milica Bulatović, Franca Wagner","doi":"10.1007/s10162-023-00904-3","DOIUrl":"10.1007/s10162-023-00904-3","url":null,"abstract":"<p><strong>Purpose: </strong>The osseous spiral lamina (OSL) is an inner cochlear bony structure that projects from the modiolus from base to apex, separating the cochlear canal into the scala vestibuli and scala tympani. The porosity of the OSL has recently attracted the attention of scientists due to its potential impact on the overall sound transduction. The bony pillars between the vestibular and tympanic plates of the OSL are not always visible in conventional histopathological studies, so imaging of such structures is usually lacking or incomplete. With this pilot study, we aimed, for the first time, to anatomically demonstrate the OSL in great detail and in 3D.</p><p><strong>Methods: </strong>We measured width, thickness, and porosity of the human OSL by microCT using increasing nominal resolutions up to 2.5-µm voxel size. Additionally, 3D models of the individual plates at the basal and middle turns and the apex were created from the CT datasets.</p><p><strong>Results: </strong>We found a constant presence of porosity in both tympanic plate and vestibular plate from basal turn to the apex. The tympanic plate appears to be more porous than vestibular plate in the basal and middle turns, while it is less porous in the apex. Furthermore, the 3D reconstruction allowed the bony pillars that lie between the OSL plates to be observed in great detail.</p><p><strong>Conclusion: </strong>By enhancing our comprehension of the OSL, we can advance our comprehension of hearing mechanisms and enhance the accuracy and effectiveness of cochlear models.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":"24 4","pages":"441-452"},"PeriodicalIF":2.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504225/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10292256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michelle R Molis, William J Bologna, Brandon M Madsen, Ramesh Kumar Muralimanohar, Curtis J Billings
{"title":"Frequency Following Responses to Tone Glides: Effects of Age and Hearing Loss.","authors":"Michelle R Molis, William J Bologna, Brandon M Madsen, Ramesh Kumar Muralimanohar, Curtis J Billings","doi":"10.1007/s10162-023-00900-7","DOIUrl":"10.1007/s10162-023-00900-7","url":null,"abstract":"<p><strong>Purpose: </strong>Speech is characterized by dynamic acoustic cues that must be encoded by the auditory periphery, auditory nerve, and brainstem before they can be represented in the auditory cortex. The fidelity of these cues in the brainstem can be assessed with the frequency-following response (FFR). Data obtained from older adults-with normal or impaired hearing-were compared with previous results obtained from normal-hearing younger adults to evaluate the effects of age and hearing loss on the fidelity of FFRs to tone glides.</p><p><strong>Method: </strong>A signal detection approach was used to model a threshold criterion to distinguish the FFR from baseline neural activity. The response strength and temporal coherence of the FFR to tone glides varying in direction (rising or falling) and extent ([Formula: see text], [Formula: see text], or 1 octave) were assessed by signal-to-noise ratio (SNR) and stimulus-response correlation coefficient (SRCC) in older adults with normal hearing and with hearing loss.</p><p><strong>Results: </strong>Significant group mean differences in both SNR and SRCC were noted-with poorer responses more frequently observed with increased age and hearing loss-but with considerable response variability among individuals within each group and substantial overlap among group distributions.</p><p><strong>Conclusion: </strong>The overall distribution of FFRs across listeners and stimulus conditions suggests that observed group differences associated with age and hearing loss are influenced by a decreased likelihood of older and hearing-impaired individuals having a detectable FFR response and by lower average FFR fidelity among those older and hearing-impaired individuals who do have a detectable response.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":"24 4","pages":"429-439"},"PeriodicalIF":2.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10353080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mark A Eckert, Fatima T Husain, Dona M P Jayakody, Winfried Schlee, Christopher R Cederroth
{"title":"An Opportunity for Constructing the Future of Data Sharing in Otolaryngology.","authors":"Mark A Eckert, Fatima T Husain, Dona M P Jayakody, Winfried Schlee, Christopher R Cederroth","doi":"10.1007/s10162-023-00908-z","DOIUrl":"10.1007/s10162-023-00908-z","url":null,"abstract":"","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":"24 4","pages":"397-399"},"PeriodicalIF":2.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10306319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Abnormal Functional Connectivity Within Default Mode Network and Salience Network Related to Tinnitus Severity.","authors":"Binbin Xiong, Zhao Liu, Jiahong Li, Xiayin Huang, Jing Yang, Wenqiang Xu, Yu-Chen Chen, Yuexin Cai, Yiqing Zheng","doi":"10.1007/s10162-023-00905-2","DOIUrl":"10.1007/s10162-023-00905-2","url":null,"abstract":"<p><strong>Background: </strong>Previous studies have demonstrated that tinnitus is associated with neural changes in the cerebral cortex. This study is aimed at investigating the central nervous characteristics of tinnitus patients with different severity by using a rs-EEG.</p><p><strong>Participants and methods: </strong>rs-EEG was recorded in fifty-seven patients with chronic tinnitus and twenty-seven healthy controls. Tinnitus patients were divided into moderate-to-severe tinnitus group and slight-to-mild tinnitus group based on their Tinnitus Handicap Inventory (THI) scores. Source localization and functional connectivity analyses were used to measure the changes in central levels and examine the altered network patterns. The correlation between functional connectivity and tinnitus severity was analyzed.</p><p><strong>Result: </strong>Compared to the healthy controls, all tinnitus patients showed significant activation in the auditory cortex (middle temporal lobe, BA 21), while moderate-to-severe tinnitus group showed enhanced connectivity between the parahippocampus and posterior cingulate gyrus. Moreover, the moderate-to-severe tinnitus group had enhanced functional connectivity between auditory cortex and insula compared to the slight-to-mild tinnitus group. The connections between the insula and the parahippocampal and posterior cingulate gyrus were positively correlated with THI scores.</p><p><strong>Conclusion: </strong>The current study reveals that patients with moderate-to-severe tinnitus demonstrate greater changes in the central brain areas, including the auditory cortex, insula, parahippocampus and posterior cingulate gyrus. In addition, enhanced connections were found between the insula and the auditory cortex, as well as the posterior cingulate gyrus and the parahippocampus, which suggests abnormality in the auditory network, salience network, and default mode network. Specifically, the insula is the core region of the neural pathway that is composed of the auditory cortex, insula, and parahippocampus/posterior cingulate gyrus. This suggests that the severity of tinnitus is affected by multiple brain regions.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":"24 4","pages":"453-462"},"PeriodicalIF":2.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10665288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nuclear Translocation Triggered at the Onset of Hearing in Cochlear Inner Hair Cells of Rats and Mice.","authors":"Megana R Iyer, Radha Kalluri","doi":"10.1007/s10162-023-00894-2","DOIUrl":"https://doi.org/10.1007/s10162-023-00894-2","url":null,"abstract":"<p><strong>Purpose: </strong>Nuclear position is precisely orchestrated during cell division, migration, and maturation of cells and tissues. Here we report a previously unrecognized, programmed movement of the nucleus in rat and mouse cochlear inner hair cells (IHCs) coinciding with the functional maturation of inner hair cells around the onset of hearing.</p><p><strong>Methods: </strong>We measured hair cell length and nuclear position from confocal scans of immunofluorescence-labeled hair cells from whole-mount cochlear preparations throughout post-natal development.</p><p><strong>Results: </strong>In early post-natal days, the IHC experiences a period of sustained growth, during which the nucleus sits at the very basal pole of the cell, far from the apically located mechano-transducing stereocilia, but close to where synapses with primary afferent and efferent neurons are forming. After IHCs reach their final length, the nucleus moves to occupy a new position half-way along the length of the cell. Nuclear translocation begins in the middle turn, completes throughout the cochlea within 2-3 days, and coincides with the emergence of endolymphatic potential, the acquisition of big-conductance potassium channels (BK), and the onset of acoustic hearing. IHCs cultured in-vitro without endolymphatic potential (EP) do not grow, do not express BK, and do not experience nuclear movement. IHCs cultured in high K+ solutions (to simulate EP) grow but do not experience nuclear movement or acquire BK channels.</p><p><strong>Conclusion: </strong>Nuclear migration at the onset of hearing is a key step in the morphological maturation of IHCs. Whether this plays a role in functional maturation remains to be explored.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":"24 3","pages":"291-303"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10335982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9788631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}