Jaro-Journal of the Association for Research in Otolaryngology最新文献

筛选
英文 中文
Experimental Study of Needle Insertion into Gerbil Tympanic Membrane. 将针插入沙鼠鼓膜的实验研究
IF 2.4 3区 医学
Jaro-Journal of the Association for Research in Otolaryngology Pub Date : 2024-10-01 Epub Date: 2024-07-11 DOI: 10.1007/s10162-024-00953-2
Hossein Mohammadi, Arash Ebrahimian, Nima Maftoon
{"title":"Experimental Study of Needle Insertion into Gerbil Tympanic Membrane.","authors":"Hossein Mohammadi, Arash Ebrahimian, Nima Maftoon","doi":"10.1007/s10162-024-00953-2","DOIUrl":"10.1007/s10162-024-00953-2","url":null,"abstract":"<p><p>The perforation characteristics and fracture-related mechanical properties of the tympanic membrane (TM) greatly affect surgical procedures like myringotomy and tympanostomy performed on the middle ear. We analyzed the most important features of the gerbil TM perforation using an experimental approach that was based on force measurement during a 2-cycle needle insertion/extraction process. Fracture energy, friction energy, strain energy, and hysteresis loss were taken into consideration for the analysis of the different stages of needle insertion and extraction. The results demonstrated that (1) although the TM shows viscoelastic behavior, the contribution of hysteresis loss was negligible compared to other irreversible dissipated energy components (i.e., fracture energy and friction energy). (2) The TM puncture force did not substantially change during the first hours after animal death, but interestingly, it increased after 1 week due to the drying effects of soft tissue. (3) The needle geometry affected the crack length and the most important features of the force-displacement plot for the needle insertion process (puncture force, puncture displacement, and jump-in force) increased with increasing needle diameter, whereas the insertion velocity only changed the puncture and jump-in forces (both increased with increasing insertion velocity) and did not have a noticeable effect on the puncture displacement. (4) The fracture toughness of the gerbil TM was almost independent of the needle geometry and was found to be around 0.33 <math><mo>±</mo></math> 0.10 kJ/m<sup>2</sup>.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"427-450"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human Olivocochlear Effects: A Statistical Detection Approach Applied to the Cochlear Microphonic Evoked by Swept Tones. 人类耳蜗效应:将统计检测方法应用于扫频诱发的耳蜗微音。
IF 2.4 3区 医学
Jaro-Journal of the Association for Research in Otolaryngology Pub Date : 2024-10-01 Epub Date: 2024-07-01 DOI: 10.1007/s10162-024-00956-z
Shawn S Goodman, Sarah Haysley, Skyler G Jennings
{"title":"Human Olivocochlear Effects: A Statistical Detection Approach Applied to the Cochlear Microphonic Evoked by Swept Tones.","authors":"Shawn S Goodman, Sarah Haysley, Skyler G Jennings","doi":"10.1007/s10162-024-00956-z","DOIUrl":"10.1007/s10162-024-00956-z","url":null,"abstract":"<p><p>The human medial olivocochlear (MOC) reflex was assessed by observing the effects of contralateral acoustic stimulation (CAS) on the cochlear microphonic (CM) across a range of probe frequencies. A frequency-swept probe tone (125-4757 Hz, 90 dB SPL) was presented in two directions (up sweep and down sweep) to normal-hearing young adults. This study assessed MOC effects on the CM in individual participants using a statistical approach that calculated minimum detectable changes in magnitude and phase based on CM signal-to-noise ratio (SNR). Significant increases in CM magnitude, typically 1-2 dB in size, were observed for most participants from 354 to 1414 Hz, where the size and consistency of these effects depended on participant, probe frequency, sweep direction, and SNR. CAS-related phase lags were also observed, consistent with CM-based MOC studies in laboratory animals. Observed effects on CM magnitude and phase were in the opposite directions of reported effects on otoacoustic emissions (OAEs). OAEs are sensitive to changes in the motility of outer hair cells located near the peak region of the traveling wave, while the effects of CAS on the CM likely originate from MOC-related changes in the conductance of outer hair cells located in the basal tail of the traveling wave. Thus, MOC effects on the CM are complementary to those observed for OAEs.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"451-475"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetry in the Perception of Electrical Chirps Presented to Cochlear Implant Listeners. 耳蜗植入者对电子鸣声感知的不对称性
IF 2.4 3区 医学
Jaro-Journal of the Association for Research in Otolaryngology Pub Date : 2024-10-01 Epub Date: 2024-08-01 DOI: 10.1007/s10162-024-00952-3
Ana Šodan, Sabine Meunier, Vincent Péan, Jean-Pierre Lavieille, Stéphane Roman, Olivier Macherey
{"title":"Asymmetry in the Perception of Electrical Chirps Presented to Cochlear Implant Listeners.","authors":"Ana Šodan, Sabine Meunier, Vincent Péan, Jean-Pierre Lavieille, Stéphane Roman, Olivier Macherey","doi":"10.1007/s10162-024-00952-3","DOIUrl":"10.1007/s10162-024-00952-3","url":null,"abstract":"<p><strong>Introduction: </strong>Although a broadband acoustic click is physically the shortest duration sound we can hear, its peripheral neural representation is not as short because of cochlear filtering. The traveling wave imposes frequency-dependent delays to the sound waveform so that in response to a click, apical nerve fibers, coding for low frequencies, are excited several milliseconds after basal fibers, coding for high frequencies. Nevertheless, a click sounds like a click and these across-fiber delays are not perceived. This suggests that they may be compensated by the central auditory system, rendering our perception consistent with the external world. This explanation is difficult to evaluate in normal-hearing listeners because the contributions of peripheral and central auditory processing cannot easily be disentangled. Here, we test this hypothesis in cochlear implant listeners for whom cochlear mechanics is bypassed.</p><p><strong>Method: </strong>Eight cochlear implant users ranked in perceived duration 12 electrical chirps of various physical durations and spanning the cochlea in the apex-to-base or base-to-apex direction (Exp. 1). Late-latency cortical potentials were also recorded in response to a subset of these chirps (Exp. 2).</p><p><strong>Results: </strong>We show that an electrical chirp spanning the cochlea from base-to-apex is perceived as shorter than the same chirp spanning the cochlea in the opposite direction despite having the same physical duration. Cortical potentials also provide neural correlates of this asymmetry in perception.</p><p><strong>Conclusion: </strong>These results demonstrate that the central auditory system processes frequency sweeps differently depending on the direction of the frequency change and that this processing difference is not simply the result of peripheral filtering.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"491-506"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Transient Receptor Potential (TRP) Channels in Cochlear Function: Looking Beyond Mechanotransduction. 更正:耳蜗功能中的瞬态受体电位(TRP)通道:超越机械传导。
IF 2.4 3区 医学
Jaro-Journal of the Association for Research in Otolaryngology Pub Date : 2024-10-01 DOI: 10.1007/s10162-024-00958-x
Trinh Nguyen, Dwight E Bergles
{"title":"Correction: Transient Receptor Potential (TRP) Channels in Cochlear Function: Looking Beyond Mechanotransduction.","authors":"Trinh Nguyen, Dwight E Bergles","doi":"10.1007/s10162-024-00958-x","DOIUrl":"10.1007/s10162-024-00958-x","url":null,"abstract":"","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"525"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA Methylation Patterns Associated with Tinnitus in Young Adults-A Pilot Study. 与年轻人耳鸣有关的 DNA 甲基化模式--一项试点研究。
IF 2.4 3区 医学
Jaro-Journal of the Association for Research in Otolaryngology Pub Date : 2024-10-01 Epub Date: 2024-08-15 DOI: 10.1007/s10162-024-00961-2
Ishan Sunilkumar Bhatt, Juan Antonio Raygoza Garay, Ali Torkamani, Raquel Dias
{"title":"DNA Methylation Patterns Associated with Tinnitus in Young Adults-A Pilot Study.","authors":"Ishan Sunilkumar Bhatt, Juan Antonio Raygoza Garay, Ali Torkamani, Raquel Dias","doi":"10.1007/s10162-024-00961-2","DOIUrl":"10.1007/s10162-024-00961-2","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Purpose: &lt;/strong&gt;Tinnitus, the perception of sound without any external sound source, is a prevalent hearing health concern. Mounting evidence suggests that a confluence of genetic, environmental, and lifestyle factors can influence the pathogenesis of tinnitus. We hypothesized that alteration in DNA methylation, an epigenetic modification that occurs at cytosines of cytosine-phosphate-guanine (CpG) dinucleotide sites, where a methyl group from S-adenyl methionine gets transferred to the fifth carbon of the cytosine, could contribute to tinnitus. DNA methylation patterns are tissue-specific, but the tissues involved in tinnitus are not easily accessible in humans. This pilot study used saliva as a surrogate tissue to identify differentially methylated CpG regions (DMRs) associated with tinnitus. The study was conducted on healthy young adults reporting bilateral continuous chronic tinnitus to limit the influence of age-related confounding factors and health-related comorbidities.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;The present study evaluated the genome-wide methylation levels from saliva-derived DNA samples from 24 healthy young adults with bilateral continuous chronic tinnitus (&gt; 1 year) and 24 age, sex, and ethnicity-matched controls with no tinnitus. Genome-wide DNA methylation was evaluated for &gt; 850,000 CpG sites using the Infinium Human Methylation EPIC BeadChip. The association analysis used the Bumphunter algorithm on 23 cases and 20 controls meeting the quality control standards. The methylation level was expressed as the area under the curve of CpG sites within DMRs.The FDR-adjusted p-value threshold of 0.05 was used to identify statistically significant DMRs associated with tinnitus.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;We obtained 25 differentially methylated regions (DMRs) associated with tinnitus. Genes within or in the proximity of the hypermethylated DMRs related to tinnitus included LCLAT1, RUNX1, RUFY1, NUDT12, TTC23, SLC43A2, C4orf27 (STPG2), and EFCAB4B. Genes within or in the proximity of hypomethylated DMRs associated with tinnitus included HLA-DPB2, PM20D1, TMEM18, SNTG2, MUC4, MIR886, MIR596, TXNRD1, EID3, SDHAP3, HLA-DPB2, LASS3 (CERS3), C10orf11 (LRMDA), HLA-DQB1, NADK, SZRD1, MFAP2, NUP210L, TPM3, INTS9, and SLC2A14. The burden of genetic variation could explain the differences in the methylation levels for DMRs involving HLA-DPB2, HLA-DQB1, and MUC4, indicating the need for replication in large independent cohorts.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusion: &lt;/strong&gt;Consistent with the literature on comorbidities associated with tinnitus, we identified genes within or close to DMRs involved in auditory functions, chemical dependency, cardiovascular diseases, psychiatric conditions, immune disorders, and metabolic syndromes. These results indicate that epigenetic mechanisms could influence tinnitus, and saliva can be a good surrogate for identifying the epigenetic underpinnings of tinnitus in humans. Further research with a larger s","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"507-523"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient Receptor Potential (TRP) Channels in Cochlear Function: Looking Beyond Mechanotransduction. 耳蜗功能中的瞬态受体电位(TRP)通道:超越机械传导。
IF 2.4 3区 医学
Jaro-Journal of the Association for Research in Otolaryngology Pub Date : 2024-10-01 Epub Date: 2024-06-26 DOI: 10.1007/s10162-024-00954-1
Trinh Nguyen, Dwight E Bergles
{"title":"Transient Receptor Potential (TRP) Channels in Cochlear Function: Looking Beyond Mechanotransduction.","authors":"Trinh Nguyen, Dwight E Bergles","doi":"10.1007/s10162-024-00954-1","DOIUrl":"10.1007/s10162-024-00954-1","url":null,"abstract":"<p><p>Transient receptor potential (TRP) channels play key roles in sensory biology as transducers of various stimuli. Although these ion channels are expressed in the cochlea, their functions remain poorly understood. Recent studies by Vélez-Ortega and colleagues indicate that their expression by non-sensory supporting cells helps limit damage from acoustic trauma.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"409-412"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Place Specificity of the Parallel Auditory Brainstem Response: An Electrophysiological Study. 增强并行听觉脑干反应的地点特异性:电生理学研究
IF 2.4 3区 医学
Jaro-Journal of the Association for Research in Otolaryngology Pub Date : 2024-10-01 Epub Date: 2024-08-20 DOI: 10.1007/s10162-024-00959-w
Thomas J Stoll, Ross K Maddox
{"title":"Enhanced Place Specificity of the Parallel Auditory Brainstem Response: An Electrophysiological Study.","authors":"Thomas J Stoll, Ross K Maddox","doi":"10.1007/s10162-024-00959-w","DOIUrl":"10.1007/s10162-024-00959-w","url":null,"abstract":"<p><strong>Purpose: </strong>This study investigates the effect of parallel stimulus presentation on the place specificity of the auditory brainstem response (ABR) in human listeners. Frequency-specific stimuli do not guarantee a response from the place on the cochlea corresponding only to that characteristic frequency - especially for brief and high-level stimuli. Adding masking noise yields responses that are more place specific, and our prior modeling study has suggested similar effects when multiple frequency-specific stimuli are presented in parallel. We tested this hypothesis experimentally here, comparing the place specificity of responses to serial and parallel stimuli at two stimulus frequencies and three stimulus rates.</p><p><strong>Methods: </strong>Parallel ABR (pABR) stimuli were presented alongside high-pass filtered noise with a varied cutoff frequency. Serial presentation was also tested by isolating and presenting single-frequency stimulus trains from the pABR ensemble. Latencies of the ABRs were examined to assess place specificity of responses. Response bands were derived by subtracting responses from different high-pass noise conditions. The response amplitude from each derived response band was then used to determine how much individual frequency regions of the auditory system were contributing to the overall response.</p><p><strong>Results: </strong>We found that parallel presentation improves place specificity of ABRs for the lower stimulus frequency and at higher stimulus rates. At a higher stimulus frequency, serial and parallel presentations were equally place specific.</p><p><strong>Conclusion: </strong>Parallel presentation can provide more place-specific responses than serial for lower stimulus frequencies. The improvement increases with higher stimulus rates and is in addition to the pABR's primary benefit of faster test times.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"477-489"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditions Underlying the Appearance of Spontaneous Otoacoustic Emissions in Mammals. 哺乳动物出现自发性耳声发射的条件
IF 2.4 3区 医学
Jaro-Journal of the Association for Research in Otolaryngology Pub Date : 2024-08-01 Epub Date: 2024-05-17 DOI: 10.1007/s10162-024-00950-5
Geoffrey A Manley
{"title":"Conditions Underlying the Appearance of Spontaneous Otoacoustic Emissions in Mammals.","authors":"Geoffrey A Manley","doi":"10.1007/s10162-024-00950-5","DOIUrl":"10.1007/s10162-024-00950-5","url":null,"abstract":"<p><p>Across the wide range of land vertebrate species, spontaneous otoacoustic emissions (SOAE) are common, but not always found. The reasons for the differences between species of the various groups in their emission patterns are often not well understood, particularly within mammals. This review examines the question as to what determines in mammals whether SOAE are emitted or not, and suggests that the coupling between hair-cell regions diminishes when the space constant of frequency distribution becomes larger. The reduced coupling is assumed to result in a greater likelihood of SOAE being emitted.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"303-311"},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Something in Our Ears Is Oscillating, but What? A Modeller's View of Efforts to Model Spontaneous Emissions. 更正:我们耳朵里的东西在摆动,但是是什么?从建模者的角度看模拟自发排放的努力。
IF 2.4 3区 医学
Jaro-Journal of the Association for Research in Otolaryngology Pub Date : 2024-08-01 DOI: 10.1007/s10162-024-00951-4
Hero P Wit, Andrew Bell
{"title":"Correction: Something in Our Ears Is Oscillating, but What? A Modeller's View of Efforts to Model Spontaneous Emissions.","authors":"Hero P Wit, Andrew Bell","doi":"10.1007/s10162-024-00951-4","DOIUrl":"10.1007/s10162-024-00951-4","url":null,"abstract":"","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"407"},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Something in Our Ears Is Oscillating, but What? A Modeller's View of Efforts to Model Spontaneous Emissions. 我们耳朵里的东西在振动,但振动的是什么?从建模者的角度看模拟自发排放的努力。
IF 2.4 3区 医学
Jaro-Journal of the Association for Research in Otolaryngology Pub Date : 2024-08-01 Epub Date: 2024-05-06 DOI: 10.1007/s10162-024-00940-7
Hero P Wit, Andrew Bell
{"title":"Something in Our Ears Is Oscillating, but What? A Modeller's View of Efforts to Model Spontaneous Emissions.","authors":"Hero P Wit, Andrew Bell","doi":"10.1007/s10162-024-00940-7","DOIUrl":"10.1007/s10162-024-00940-7","url":null,"abstract":"<p><p>When David Kemp discovered \"spontaneous ear noise\" in 1978, it opened up a whole new perspective on how the cochlea works. The continuous tonal sound emerging from most healthy human ears, now called spontaneous otoacoustic emissions or SOAEs, was an unmistakable sign that our hearing organ must be considered an active detector, not just a passive microphone, just as Thomas Gold had speculated some 30 years earlier. Clearly, something is oscillating as a byproduct of that sensitive inbuilt detector, but what exactly is it? Here, we give a chronological account of efforts to model SOAEs as some form of oscillator, and at intervals, we illustrate key concepts with numerical simulations. We find that after many decades there is still no consensus, and the debate extends to whether the oscillator is local, confined to discrete local sources on the basilar membrane, or global, in which an assembly of micro-mechanical elements and basilar membrane sections, coupled by inner ear fluid, interact over a wide region. It is also undecided whether the cochlear oscillator is best described in terms of the well-known Van der Pol oscillator or the less familiar Duffing or Hopf oscillators. We find that irregularities play a key role in generating the emissions. This paper is not a systematic review of SOAEs and their properties but more a historical survey of the way in which various oscillator configurations have been applied to modelling human ears. The conclusion is that the difference between the local and global approaches is not clear-cut, and they are probably not mutually exclusive concepts. Nevertheless, when one sees how closely human SOAEs can be matched to certain arrangements of oscillators, Gold would no doubt say we are on the right track.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"313-328"},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信