{"title":"A novel homozygous HPDL variant in Japanese siblings with autosomal recessive hereditary spastic paraplegia: case report and literature review.","authors":"Fumikazu Kojima, Yuji Okamoto, Masahiro Ando, Yujiro Higuchi, Takahiro Hobara, Junhui Yuan, Akiko Yoshimura, Akihiro Hashiguchi, Eiji Matsuura, Hiroshi Takashima","doi":"10.1007/s10048-024-00746-y","DOIUrl":"10.1007/s10048-024-00746-y","url":null,"abstract":"<p><p>Biallelic variants of 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) gene have been linked to neurodegenerative disorders ranging from severe neonatal encephalopathy to early-onset spastic paraplegia. We identified a novel homozygous variant, c.340G > T (p.Gly114Cys), in the HPDL gene in two siblings with autosomal recessive hereditary spastic paraplegia (HSP). Despite sharing the same likely pathogenic variant, the older sister had pure HSP, whereas her brother had severe and complicated HSP, accompanied by early-onset mental retardation and abnormalities in magnetic resonance imaging. Given the clinical heterogeneity and potential for treatable conditions in HPDL-related diseases, we emphasize the importance of genetic testing for the HPDL gene.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"149-156"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139576265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GLUT-1DS resistant to ketogenic diet: from clinical feature to in silico analysis. An exemplificative case report with a literature review.","authors":"Raffaele Falsaperla, Vincenzo Sortino, Giovanna Vitaliti, Grete Francesca Privitera, Martino Ruggieri, Gaia Fusto, Xena Giada Pappalardo","doi":"10.1007/s10048-023-00742-8","DOIUrl":"10.1007/s10048-023-00742-8","url":null,"abstract":"<p><p>Glucose transporter type 1 deficiency syndrome (GLUT-1DS) is characterized by alterations in glucose translocation through the blood-brain barrier (BBB) due to mutation involving the GLUT-1 transporter. The fundamental therapy is ketogenic diet (KD) that provide an alternative energetic substrate - ketone bodies that across the BBB via MCT-1 - for the brain. Symptoms are various and include intractable seizure, acquired microcephalia, abnormal ocular movement, movement disorder, and neurodevelopment delay secondary to an energetic crisis for persistent neuroglycopenia. KD is extremely effective in controlling epileptic seizures and has a positive impact on movement disorders and cognitive impairment. Cases of KD resistance are rare, and only a few of them are reported in the literature, all regarding seizure. Our study describes a peculiar case of GLUT-1DS due to a new deletion involving the first codon of SLC2A1 gene determining a loss of function with a resistance to KD admitted to hospital due to intractable episodes of dystonia. This patient presented a worsening of symptomatology at higher ketonemia values but without hyperketosis and showed a complete resolution of symptomatology while maintaining low ketonemia values. Our study proposes an in-silico genomic and proteomic analysis aimed at explaining the atypical response to KD exhibited by our patient. In this way, we propose a new clinical and research approach based on precision medicine and molecular modelling to be applied to patients with GLUT-1DS resistant to first-line treatment with ketogenic diet by in silico study of genetic and altered protein product.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"69-78"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139378885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeurogeneticsPub Date : 2024-04-01Epub Date: 2024-01-19DOI: 10.1007/s10048-024-00744-0
Wejdan Hakami, Farah Thabet, Amal Alhashem, Abdulaziz Alghamdi, Saad Alshahwan, Fowzan S Alkuraya, Brahim Tabarki
{"title":"Bi-allelic variants in HCRT cause autosomal recessive narcolepsy.","authors":"Wejdan Hakami, Farah Thabet, Amal Alhashem, Abdulaziz Alghamdi, Saad Alshahwan, Fowzan S Alkuraya, Brahim Tabarki","doi":"10.1007/s10048-024-00744-0","DOIUrl":"10.1007/s10048-024-00744-0","url":null,"abstract":"<p><p>Narcolepsy with cataplexy is a complex disease with both genetic and environmental risk factors. To gain further insight into the homozygous HCRT-related narcolepsy, we present a case series of five patients from two consanguineous families, each harboring a novel homozygous variant of HCRT c.17_18del. All affected individuals exhibited severe cataplexy accompanied by narcolepsy symptoms during infancy. Additionally, cataplexy symptoms improved or disappeared in the majority of patients over time. Pathogenic variants in HCRT cause autosomal recessive narcolepsy with cataplexy. Genetic testing of the HCRT gene should be conducted in specific subgroups of narcolepsy, particularly those with early onset, familial cases, and a predominantly cataplexy phenotype.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"79-83"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intragenic homozygous duplication in HEPACAM is associated with megalencephalic leukoencephalopathy with subcortical cysts type 2A.","authors":"Namanpreet Kaur, Khyati Arora, Periyasamy Radhakrishnan, Dhanya Lakshmi Narayanan, Anju Shukla","doi":"10.1007/s10048-024-00743-1","DOIUrl":"10.1007/s10048-024-00743-1","url":null,"abstract":"<p><p>Disease-causing variants in HEPACAM are associated with megalencephalic leukoencephalopathy with subcortical cysts 2A (MLC2A, MIM# 613,925, autosomal recessive), and megalencephalic leukoencephalopathy with subcortical cysts 2B, remitting, with or without impaired intellectual development (MLC2B, MIM# 613,926, autosomal dominant). These disorders are characterised by macrocephaly, seizures, motor delay, cognitive impairment, ataxia, and spasticity. Brain magnetic resonance imaging (MRI) in these individuals shows swollen cerebral hemispheric white matter and subcortical cysts, mainly in the frontal and temporal regions. To date, 45 individuals from 39 families are reported with biallelic and heterozygous variants in HEPACAM, causing MLC2A and MLC2B, respectively. A 9-year-old male presented with developmental delay, gait abnormalities, seizures, macrocephaly, dysarthria, spasticity, and hyperreflexia. MRI revealed subcortical cysts with diffuse cerebral white matter involvement. Whole-exome sequencing (WES) in the proband did not reveal any clinically relevant single nucleotide variants. However, copy number variation analysis from the WES data of the proband revealed a copy number of 4 for exons 3 and 4 of HEPACAM. Validation and segregation were done by quantitative PCR which confirmed the homozygous duplication of these exons in the proband and carrier status in both parents. To the best of our knowledge, this is the first report of an intragenic duplication in HEPACAM causing MLC2A.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"85-91"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139572150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expanding the clinical and genetic landscape of (developmental) epileptic encephalopathy with spike-and-wave activation in sleep: results from studies of a Turkish cohort.","authors":"Ayberk Türkyılmaz, Safiye Güneş Sağer, Emine Tekin, Kerem Teralı, Hanife Düzkalır, Metin Eser, Yasemin Akın","doi":"10.1007/s10048-024-00751-1","DOIUrl":"10.1007/s10048-024-00751-1","url":null,"abstract":"<p><p>The terms developmental epileptic encephalopathy with spike-and-wave activation in sleep (DEE-SWAS) and epileptic encephalopathy with spike-and-wave activation in sleep (EE-SWAS) designate a spectrum of conditions that are typified by different combinations of motor, cognitive, language, and behavioral regression linked to robust spike-and-wave activity during sleep. In this study, we aimed at describing the clinical and molecular findings in \"(developmental) epileptic encephalopathy with spike-and-wave activation in sleep\" (D)EE-SWAS) patients as well as at contributing to the genetic etiologic spectrum of (D)EE-SWAS. Single nucleotide polymorphism (SNP) array and whole-exome sequencing (WES) techniques were used to determine the underlying genetic etiologies. Of the 24 patients included in the study, 8 (33%) were female and 16 (67%) were male. The median age at onset of the first seizure was 4 years and the median age at diagnosis of (D)EE-SWAS was 5 years. Of the 24 cases included in the study, 13 were compatible with the clinical diagnosis of DEE-SWAS and 11 were compatible with the clinical diagnosis of EE-SWAS. Abnormal perinatal history was present in four cases (17%), and two cases (8%) had a family history of epilepsy. Approximately two-thirds (63%) of all patients had abnormalities detected on brain computerized tomography/magnetic resonance (CT/MR) imaging. After SNP array and WES analysis, the genetic etiology was revealed in 7 out of 24 (29%) cases. Three of the variants detected were novel (SLC12A5, DLG4, SLC9A6). This study revealed for the first time that Smith-Magenis syndrome, SCN8A-related DEE type 13 and SLC12A5 gene variation are involved in the genetic etiology of (D)EE-SWAS. (D)EE-SWAS is a genetically diverse disorder with underlying copy number variations and single-gene abnormalities. In the current investigation, rare novel variations in genes known to be related to (D)EE-SWAS and not previously reported genes to be related to (D)EE-SWAS were discovered, adding to the molecular genetic spectrum. Molecular etiology enables the patient and family to receive thorough and accurate genetic counseling as well as a personalized medicine approach.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"119-130"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hereditary spastic paraparesis type 46 (SPG46): new GBA2 variants in a large Italian case series and review of the literature.","authors":"Ettore Cioffi, Gianluca Coppola, Olimpia Musumeci, Salvatore Gallone, Gabriella Silvestri, Salvatore Rossi, Fiorella Piemonte, Jessica D'Amico, Alessandra Tessa, Filippo Maria Santorelli, Carlo Casali","doi":"10.1007/s10048-024-00749-9","DOIUrl":"10.1007/s10048-024-00749-9","url":null,"abstract":"<p><p>Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"51-67"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gene-gene interaction network analysis indicates CNTN2 is a candidate gene for idiopathic generalized epilepsy.","authors":"Zhi-Jian Lin, Jun-Wei He, Sheng-Yin Zhu, Li-Hong Xue, Jian-Feng Zheng, Li-Qin Zheng, Bi-Xia Huang, Guo-Zhang Chen, Peng-Xing Lin","doi":"10.1007/s10048-024-00748-w","DOIUrl":"10.1007/s10048-024-00748-w","url":null,"abstract":"<p><p>Twin and family studies have established the genetic contribution to idiopathic generalized epilepsy (IGE). The genetic architecture of IGE is generally complex and heterogeneous, and the majority of the genetic burden in IGE remains unsolved. We hypothesize that gene-gene interactions contribute to the complex inheritance of IGE. CNTN2 (OMIM* 615,400) variants have been identified in cases with familial adult myoclonic epilepsy and other epilepsies. To explore the gene-gene interaction network in IGE, we took the CNTN2 gene as an example and investigated its co-occurrent genetic variants in IGE cases. We performed whole-exome sequencing in 114 unrelated IGE cases and 296 healthy controls. Variants were qualified with sequencing quality, minor allele frequency, in silico prediction, genetic phenotype, and recurrent case numbers. The STRING_TOP25 gene interaction network analysis was introduced with the bait gene CNTN2 (denoted as A). The gene-gene interaction pair mode was presumed to be A + c, A + d, A + e, with a leading gene A, or A + B + f, A + B + g, A + B + h, with a double-gene A + B, or other combinations. We compared the number of gene interaction pairs between the case and control groups. We identified three pairs in the case group, CNTN2 + PTPN18, CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2, and CNTN2 + PTPRZ1, while we did not discover any pairs in the control group. The number of gene interaction pairs in the case group was much more than in the control group (p = 0.021). Taking together the genetic bioinformatics, reported epilepsy cases, and statistical evidence in the study, we supposed CNTN2 as a candidate pathogenic gene for IGE. The gene interaction network analysis might help screen candidate genes for IGE or other complex genetic disorders.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"131-139"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140068940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeurogeneticsPub Date : 2024-03-18DOI: 10.1007/s10048-024-00752-0
Sokhna Haissatou Diaw, Sylvie Delcambre, Christoph Much, Fabian Ott, Vladimir S. Kostic, Agata Gajos, Alexander Münchau, Simone Zittel, Hauke Busch, Anne Grünewald, Christine Klein, Katja Lohmann
{"title":"DYT-THAP1: exploring gene expression in fibroblasts for potential biomarker discovery","authors":"Sokhna Haissatou Diaw, Sylvie Delcambre, Christoph Much, Fabian Ott, Vladimir S. Kostic, Agata Gajos, Alexander Münchau, Simone Zittel, Hauke Busch, Anne Grünewald, Christine Klein, Katja Lohmann","doi":"10.1007/s10048-024-00752-0","DOIUrl":"https://doi.org/10.1007/s10048-024-00752-0","url":null,"abstract":"<p>Dystonia due to pathogenic variants in the <i>THAP1</i> gene (DYT-THAP1) shows variable expressivity and reduced penetrance of ~ 50%. Since <i>THAP1</i> encodes a transcription factor, modifiers influencing this variability likely operate at the gene expression level. This study aimed to assess the transferability of differentially expressed genes (DEGs) in neuronal cells related to pathogenic variants in the <i>THAP1</i> gene, which were previously identified by transcriptome analyses. For this, we performed quantitative (qPCR) and Digital PCR (dPCR) in cultured fibroblasts. RNA was extracted from THAP1 manifesting (MMCs) and non-manifesting mutation carriers (NMCs) as well as from healthy controls. The expression profiles of ten of 14 known neuronal DEGs demonstrated differences in fibroblasts between these three groups. This included transcription factors and targets (<i>ATF4</i>, <i>CLN3</i>, <i>EIF2A, RRM1, YY1</i>), genes involved in G protein-coupled receptor signaling (<i>BDKRB2, LPAR1</i>), and a gene linked to apoptosis and DNA replication/repair (<i>CRADD</i>), which all showed higher expression levels in MMCs and NMCs than in controls. Moreover, the analysis of genes linked to neurological disorders (<i>STXBP1</i>, <i>TOR1A</i>) unveiled differences in expression patterns between MMCs and controls. Notably, the genes <i>CUEDC2</i>, <i>DRD4</i>, <i>ECH1</i>, and <i>SIX2</i> were not statistically significantly differentially expressed in fibroblast cultures. With > 70% of the tested genes being DEGs also in fibroblasts, fibroblasts seem to be a suitable model for DYT-THAP1 research despite some restrictions. Furthermore, at least some of these DEGs may potentially also serve as biomarkers of DYT-THAP1 and influence its penetrance and expressivity.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":"2 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeurogeneticsPub Date : 2024-03-18DOI: 10.1007/s10048-024-00754-y
{"title":"Early onset epileptic and developmental encephalopathy and MOGS variants: a new diagnosis in the whole exome sequencing (WES) ERA","authors":"","doi":"10.1007/s10048-024-00754-y","DOIUrl":"https://doi.org/10.1007/s10048-024-00754-y","url":null,"abstract":"<h3>Abstract</h3> <p>Mannosyl-oligosaccharide<?tk 4?> glucosidase – congenital disorder of glycosylation (MOGS-CDG) is determined by biallelic mutations in the mannosyl-oligosaccharide glucosidase (glucosidase I) gene. MOGS-CDG is a rare disorder affecting the processing of N-Glycans (CDG type II) and is characterized by prominent neurological involvement including hypotonia, developmental delay, seizures and movement disorders. To the best of our knowledge, 30 patients with MOGS-CDG have been published so far. We described a child who is compound heterozygous for two novel variants in the <em>MOGS</em> gene. He presented Early Infantile Developmental and Epileptic Encephalopathy (EI-DEE) in the absence of other specific systemic involvement and unrevealing first-line biochemical findings. In addition to the previously described features, the patient presented a Hirschprung disease, never reported before in individuals with MOGS-CDG.<?tk 0?></p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":"144 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeurogeneticsPub Date : 2024-02-21DOI: 10.1007/s10048-024-00750-2
Pardis Najafi, Christian Reimer, Jonathan D. Gilthorpe, Kirsten R. Jacobsen, Maja Ramløse, Nora-Fabienne Paul, Henner Simianer, Jens Tetens, Clemens Falker-Gieske
{"title":"Genomic evidence for the suitability of Göttingen Minipigs with a rare seizure phenotype as a model for human epilepsy","authors":"Pardis Najafi, Christian Reimer, Jonathan D. Gilthorpe, Kirsten R. Jacobsen, Maja Ramløse, Nora-Fabienne Paul, Henner Simianer, Jens Tetens, Clemens Falker-Gieske","doi":"10.1007/s10048-024-00750-2","DOIUrl":"https://doi.org/10.1007/s10048-024-00750-2","url":null,"abstract":"<p>Epilepsy is a complex genetic disorder that affects about 2% of the global population. Although the frequency and severity of epileptic seizures can be reduced by a range of pharmacological interventions, there are no disease-modifying treatments for epilepsy. The development of new and more effective drugs is hindered by a lack of suitable animal models. Available rodent models may not recapitulate all key aspects of the disease. Spontaneous epileptic convulsions were observed in few Göttingen Minipigs (GMPs), which may provide a valuable alternative animal model for the characterisation of epilepsy-type diseases and for testing new treatments. We have characterised affected GMPs at the genome level and have taken advantage of primary fibroblast cultures to validate the functional impact of fixed genetic variants on the transcriptome level. We found numerous genes connected to calcium metabolism that have not been associated with epilepsy before, such as <i>ADORA2B</i>, <i>CAMK1D</i>, <i>ITPKB</i>, <i>MCOLN2</i>, <i>MYLK</i>, <i>NFATC3</i>, <i>PDGFD</i>, and <i>PHKB</i>. Our results have identified two transcription factor genes, <i>EGR3</i> and <i>HOXB6</i>, as potential key regulators of <i>CACNA1H</i>, which was previously linked to epilepsy-type disorders in humans. Our findings provide the first set of conclusive results to support the use of affected subsets of GMPs as an alternative and more reliable model system to study human epilepsy. Further neurological and pharmacological validation of the suitability of GMPs as an epilepsy model is therefore warranted.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":"42 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}